4,275 research outputs found

    Approximating subset kk-connectivity problems

    Get PDF
    A subset TβŠ†VT \subseteq V of terminals is kk-connected to a root ss in a directed/undirected graph JJ if JJ has kk internally-disjoint vsvs-paths for every v∈Tv \in T; TT is kk-connected in JJ if TT is kk-connected to every s∈Ts \in T. We consider the {\sf Subset kk-Connectivity Augmentation} problem: given a graph G=(V,E)G=(V,E) with edge/node-costs, node subset TβŠ†VT \subseteq V, and a subgraph J=(V,EJ)J=(V,E_J) of GG such that TT is kk-connected in JJ, find a minimum-cost augmenting edge-set FβŠ†Eβˆ–EJF \subseteq E \setminus E_J such that TT is (k+1)(k+1)-connected in JβˆͺFJ \cup F. The problem admits trivial ratio O(∣T∣2)O(|T|^2). We consider the case ∣T∣>k|T|>k and prove that for directed/undirected graphs and edge/node-costs, a ρ\rho-approximation for {\sf Rooted Subset kk-Connectivity Augmentation} implies the following ratios for {\sf Subset kk-Connectivity Augmentation}: (i) b(ρ+k)+(3∣T∣∣Tβˆ£βˆ’k)2H(3∣T∣∣Tβˆ£βˆ’k)b(\rho+k) + {(\frac{3|T|}{|T|-k})}^2 H(\frac{3|T|}{|T|-k}); (ii) ρ⋅O(∣T∣∣Tβˆ£βˆ’klog⁑k)\rho \cdot O(\frac{|T|}{|T|-k} \log k), where b=1 for undirected graphs and b=2 for directed graphs, and H(k)H(k) is the kkth harmonic number. The best known values of ρ\rho on undirected graphs are min⁑{∣T∣,O(k)}\min\{|T|,O(k)\} for edge-costs and min⁑{∣T∣,O(klog⁑∣T∣)}\min\{|T|,O(k \log |T|)\} for node-costs; for directed graphs ρ=∣T∣\rho=|T| for both versions. Our results imply that unless k=∣Tβˆ£βˆ’o(∣T∣)k=|T|-o(|T|), {\sf Subset kk-Connectivity Augmentation} admits the same ratios as the best known ones for the rooted version. This improves the ratios in \cite{N-focs,L}

    A 1.751.75 LP approximation for the Tree Augmentation Problem

    Full text link
    In the Tree Augmentation Problem (TAP) the goal is to augment a tree TT by a minimum size edge set FF from a given edge set EE such that TβˆͺFT \cup F is 22-edge-connected. The best approximation ratio known for TAP is 1.51.5. In the more general Weighted TAP problem, FF should be of minimum weight. Weighted TAP admits several 22-approximation algorithms w.r.t. to the standard cut LP-relaxation, but for all of them the performance ratio of 22 is tight even for TAP. The problem is equivalent to the problem of covering a laminar set family. Laminar set families play an important role in the design of approximation algorithms for connectivity network design problems. In fact, Weighted TAP is the simplest connectivity network design problem for which a ratio better than 22 is not known. Improving this "natural" ratio is a major open problem, which may have implications on many other network design problems. It seems that achieving this goal requires finding an LP-relaxation with integrality gap better than 22, which is a long time open problem even for TAP. In this paper we introduce such an LP-relaxation and give an algorithm that computes a feasible solution for TAP of size at most 1.751.75 times the optimal LP value. This gives some hope to break the ratio 22 for the weighted case. Our algorithm computes some initial edge set by solving a partial system of constraints that form the integral edge-cover polytope, and then applies local search on 33-leaf subtrees to exchange some of the edges and to add additional edges. Thus we do not need to solve the LP, and the algorithm runs roughly in time required to find a minimum weight edge-cover in a general graph.Comment: arXiv admin note: substantial text overlap with arXiv:1507.0279
    • …
    corecore