48 research outputs found

    Regulation of RhoA-dependent ROCKII activation by Shp2

    Get PDF
    Contractile forces mediated by RhoA and Rho kinase (ROCK) are required for a variety of cellular processes, including cell adhesion. In this study, we show that RhoA-dependent ROCKII activation is negatively regulated by phosphorylation at a conserved tyrosine residue (Y722) in the coiled-coil domain of ROCKII. Tyrosine phosphorylation of ROCKII is increased with cell adhesion, and loss of Y722 phosphorylation delays adhesion and spreading on fibronectin, suggesting that this modification is critical for restricting ROCKII-mediated contractility during these processes. Further, we provide evidence that Shp2 mediates dephosphorylation of ROCKII and, therefore, regulates RhoA-induced cell rounding, indicating that Shp2 couples with RhoA signaling to control ROCKII activation during deadhesion. Thus, reversible tyrosine phosphorylation confers an additional layer of control to fine-tune RhoA-dependent activation of ROCKII

    Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Application of superparamagnetic iron oxide nanoparticles (SPIOs) as the contrast agent has improved the quality of magnetic resonance (MR) imaging. Low efficiency of loading the commercially available iron oxide nanoparticles into cells and the cytotoxicity of previously formulated complexes limit their usage as the image probe. Here, we formulated new cationic lipid nanoparticles containing SPIOs feasible for <it>in vivo </it>imaging.</p> <p>Methods</p> <p>Hydrophobic SPIOs were incorporated into cationic lipid 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and polyethylene-glycol-2000-1,2-distearyl-3-sn-phosphatidylethanolamine (PEG-DSPE) based micelles by self-assembly procedure to form lipid-coated SPIOs (L-SPIOs). Trace amount of Rhodamine-dioleoyl-phosphatidylethanolamine (Rhodamine-DOPE) was added as a fluorescent indicator. Particle size and zeta potential of L-SPIOs were determined by Dynamic Light Scattering (DLS) and Laser Doppler Velocimetry (LDV), respectively. HeLa, PC-3 and Neuro-2a cells were tested for loading efficiency and cytotoxicity of L-SPIOs using fluorescent microscopy, Prussian blue staining and flow cytometry. L-SPIO-loaded CT-26 cells were tested for <it>in vivo </it>MR imaging.</p> <p>Results</p> <p>The novel formulation generates L-SPIOs particle with the average size of 46 nm. We showed efficient cellular uptake of these L-SPIOs with cationic surface charge into HeLa, PC-3 and Neuro-2a cells. The L-SPIO-loaded cells exhibited similar growth potential as compared to unloaded cells, and could be sorted by a magnet stand over ten-day duration. Furthermore, when SPIO-loaded CT-26 tumor cells were injected into Balb/c mice, the growth status of these tumor cells could be monitored using optical and MR images.</p> <p>Conclusion</p> <p>We have developed a novel cationic lipid-based nanoparticle of SPIOs with high loading efficiency, low cytotoxicity and long-term imaging signals. The results suggested these newly formulated non-toxic lipid-coated magnetic nanoparticles as a versatile image probe for cell tracking.</p

    DNA Binding and Cleavage by the Periplasmic Nuclease Vvn: A Novel Structure with a Known Active Site

    No full text
    The Vibrio vulnificus nuclease, Vvn, is a non-specific periplasmic nuclease capable of digesting DNA and RNA. The crystal structure of Vvn and that of Vvn mutant H80A in complex with DNA were resolved at 2.3 A resolution. Vvn has a novel mixed alpha/beta topology containing four disulfide bridges, suggesting that Vvn is not active under reducing conditions in the cytoplasm. The overall structure of Vvn shows no similarity to other endonucleases; however, a known 'betabetaalpha-metal' motif is identified in the central cleft region. The crystal structure of the mutant Vvn-DNA complex demonstrates that Vvn binds mainly at the minor groove of DNA, resulting in duplex bending towards the major groove by approximately 20 degrees. Only the DNA phosphate backbones make hydrogen bonds with Vvn, suggesting a structural basis for its sequence-independent recognition of DNA and RNA. Based on the enzyme-substrate and enzyme- product structures observed in the mutant Vvn-DNA crystals, a catalytic mechanism is proposed. This structural study suggests that Vvn hydrolyzes DNA by a general single-metal ion mechanism, and indicates how non- specific DNA-binding proteins may recognize DNA

    Mitotic Degradation of Human Thymidine Kinase 1 Is Dependent on the Anaphase-Promoting Complex/Cyclosome-Cdh1-Mediated Pathway

    No full text
    The expression of human thymidine kinase 1 (hTK1) is highly dependent on the growth states and cell cycle stages in mammalian cells. The amount of hTK1 is significantly increased in the cells during progression to the S and M phases, and becomes barely detectable in the early G(1) phase by a proteolytic control during mitotic exit. This tight regulation is important for providing the correct pool of dTTP for DNA synthesis at the right time in the cell cycle. Here, we investigated the mechanism responsible for mitotic degradation of hTK1. We show that hTK1 is degraded via a ubiquitin-proteasome pathway in mammalian cells and that anaphase-promoting complex/cyclosome (APC/C) activator Cdh1 is not only a necessary but also a rate-limiting factor for mitotic degradation of hTK1. Furthermore, a KEN box sequence located in the C-terminal region of hTK1 is required for its mitotic degradation and interaction capability with Cdh1. By in vitro ubiquitinylation assays, we demonstrated that hTK1 is targeted for degradation by the APC/C-Cdh1 ubiquitin ligase dependent on this KEN box motif. Taken together, we concluded that activation of the APC/C-Cdh1 complex during mitotic exit controls timing of hTK1 destruction, thus effectively minimizing dTTP formation from the salvage pathway in the early G(1) phase of the cell cycle in mammalian cells

    Rhoa Signaling in Phorbol Ester-Induced Apoptosis

    No full text
    Exposure of cells to phorbol ester activates protein kinase C (PKC) to induce apoptosis or differentiation, depending on the cellular context. In erythroblastic cell lines, TF-1 and D2, upregulation of the RhoA signaling promotes phorbol ester-induced apoptosis through activating Rho- associated kinase (ROCK)/phosphorylation of myosin light chain (MLC), thus generating membrane contraction force. As a result, cell adhesion is inhibited and death receptor-mediated death pathway is activated in these cells with a concurrent changes in nucleocytoplasmic signaling for protein trafficking. A microtubule-regulated GEF-H1, which is a specific RhoA activator, was identified to contribute to RhoA activation in these cells. Thus, a cytoskeleton- regulated RhoA signaling cooperates with PKC activation constitutes a cellular context to determine the cell fate in response to phorbol ester stimulation
    corecore