37 research outputs found

    Profile changes of putative periodontal pathogens after non-surgical periodontal treatment

    Get PDF
    postprin

    ACE gene insertion/deletion polymorphism has a mild influence on the acute development of left ventricular dysfunction in patients with ST elevation myocardial infarction treated with primary PCI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We evaluated the associations among angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism, ACE activity and post-myocardial infarction (MI) left ventricular dysfunction and acute heart failure (AHF) early after presentation with MI with ST-segment elevation (STEMI).</p> <p>Methods</p> <p>A total of 556 patients with STEMI treated by primary PCI (421 patients without AHF and 135 patients with AHF) were the study population. The activity of BNP, NT-ProBNP and ACE were measured at hospital admission and 24 h after MI onset. Left ventricular angiography was done before PCI; echocardiography was undertaken between the third and fifth day after MI.</p> <p>Results</p> <p>In comparison with the II genotypes group, the DD/ID group had a higher level of ACE activity upon hospital admission (p < 0.001). We found a significantly higher level of ACE activity in patients with moderate LV dysfunction (EF 40-54%) in comparison both with patients with preserved LV function (EF ≥55%) and with patients with severe LV dysfunction (p = 0.028). A non-significant trend towards a higher incidence of mild AHF (22.1% vs. 16.02%, p = 0,093), a significantly higher value of end-systolic volume (ESV/BSA) (30.0 ± 12.3 vs. 28.5 ± 13.0; p < 0.05) and lower EF (50.2 ± 11.1 vs. 52.7 ± 11.7; p < 0.05) in the DD/ID genotypes group was noted. Even after multiple adjustments according to multivariate models, the EF for the DD/ID group remained significantly lower (p = 0,033). The DD/ID genotypes were associated with a significantly higher risk of EF <45% (OR 2.04 [95% CI 1.28; 3.25]).</p> <p>Conclusions</p> <p>These results suggest that the I/D polymorphism of ACE is associated with the development of LV dysfunction in the acute phase after STEMI. We demonstrated for the first time an association of the low ACE activity with the severe LV dysfunction, although patients with moderate LV dysfunction had higher level ACE activity than patients with preserved LV function.</p

    The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases

    Get PDF
    Genetic epidemiologists have taken the challenge to identify genetic polymorphisms involved in the development of diseases. Many have collected data on large numbers of genetic markers but are not familiar with available methods to assess their association with complex diseases. Statistical methods have been developed for analyzing the relation between large numbers of genetic and environmental predictors to disease or disease-related variables in genetic association studies. In this commentary we discuss logistic regression analysis, neural networks, including the parameter decreasing method (PDM) and genetic programming optimized neural networks (GPNN) and several non-parametric methods, which include the set association approach, combinatorial partitioning method (CPM), restricted partitioning method (RPM), multifactor dimensionality reduction (MDR) method and the random forests approach. The relative strengths and weaknesses of these methods are highlighted. Logistic regression and neural networks can handle only a limited number of predictor variables, depending on the number of observations in the dataset. Therefore, they are less useful than the non-parametric methods to approach association studies with large numbers of predictor variables. GPNN on the other hand may be a useful approach to select and model important predictors, but its performance to select the important effects in the presence of large numbers of predictors needs to be examined. Both the set association approach and random forests approach are able to handle a large number of predictors and are useful in reducing these predictors to a subset of predictors with an important contribution to disease. The combinatorial methods give more insight in combination patterns for sets of genetic and/or environmental predictor variables that may be related to the outcome variable. As the non-parametric methods have different strengths and weaknesses we conclude that to approach genetic association studies using the case-control design, the application of a combination of several methods, including the set association approach, MDR and the random forests approach, will likely be a useful strategy to find the important genes and interaction patterns involved in complex diseases

    Association of the phosphodiesterase 4D (PDE4D) gene and cardioembolic stroke in an Australian cohort

    Get PDF
    Background: Large-scale epidemiological studies support an important role for susceptibility genes in the pathogenesis of ischemic stroke, with phosphodiesterase 4D identified as the first gene predisposing to ischemic stroke. Several single nucleotide polymorphisms within the phosphodiesterase 4D gene have been implicated in the pathogenesis of stroke. Aim: Undertake a multivariate analysis of six single nucleotide polymorphisms within the phosphodiesterase 4D gene in a previously defined Australian stroke cohort, to determine whether these single nucleotide polymorphisms have an association with ischemic stroke. Methods: This case–control study was performed using an existing genetic database of 180 ischemic stroke patients and 301 community controls, evaluated previously for cerebrovascular risk factors (hypertension, hypercholesterolemia, diabetes, paroxysmal atrial fibrillation, smoking and history of stroke in a first-degree relative). Based on previously reported associations with large vessel disease, ischemic stroke, cardioembolic stroke or a mixture of these, six single nucleotide polymorphisms in the phosphodiesterase 4D gene were selected for study, these being single nucleotide polymorphisms 13, 19, rs152312, 45, 83 and 87, based on previously utilized DeCODE nomenclature. Single nucleotide polymorphisms were genotyped using a sequence-specific polymerase chain reaction method and gel electrophoresis. Logistic regression was undertaken to determine the relevance of each polymorphism to stroke. Further analysis was undertaken to determine the risk of stroke following stratification for stroke sub-type and etiology. Results: Significant odds ratios were found to be associated with cardioembolic strokes in two single nucleotide polymorphisms: rs152312 and SNP 45 (P<0·05). Conclusions: Our findings demonstrated an association between cardioembolic stroke and phosphodiesterase 4D single nucleotide polymorphisms rs152312 and 45. No significant association was found for the other four single nucleotide polymorphisms investigated within the phosphodiesterase 4D gene. We propose that the results from this Australian population support the concept that a large prospective international study is required to investigate the role of phosphodiesterase 4D in the cardiogenic cause of ischemic stroke.Austin G. Milton, Verna M. Aykanat, M. Anne Hamilton-Bruce, Mark Nezic, Jim Jannes, Simon A. Kobla

    Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension

    No full text
    The renin-angiotensin system is involved in control of blood pressure and salt and fluid homeostasis. Genes for components of this system have been of major focus in research on the causation of the common, complex, polygenic trait, essential hypertension (HT). Association of an A-->C variant at nucleotide 1166 of the angiotensin II type 1 receptor (AT(1)R) gene with HT, but an absence of linkage of this locus with this disease, has been reported recently. Since cofirmation in a different setting is imperative, we performed a cross-sectional case-control study of the Al166C variant in a well-characterized group of 108 Caucasian HT subjects with a strong family history (two affected parents) and early onset disease. Genotyping was by mismatch polymerase chain reaction/BfrI restriction fragment length polymorphism analysis. Frequency of the C-1166 allele was 0.40 in HTs and 0.29 in normotensives. The difference in genotype (chi(2) = 13, P = 0.0015) and allele (chi(2) = 5.3, P = 0.02) frequencies between the two groups was significant (odds ratio for CC vs AA + AC = 7.3 [95% CI, 1.9-31.9). The present results implicate the AT(1)R gene, or a locus in linkage disequilibrium with the variant tested, in the causation of essential HT

    Examination of the role of nitric oxide synthase and renal kallikrein as candidate genes for essential hypertension

    No full text
    Nitric oxide synthase and renal kallikrein are both involved in blood pressure regulation. Genes for these enzymes may, therefore, be considered candidates for hypertension pathogenesis. 2. In the present study, genotypes for nitric oxide synthase and renal kallikrein microsatellite markers were determined in a cross-sectional association analysis of hypertensive patients and normotensive control subjects. 3. Results from this study did not indicate an association of either of the candidate gene polymorphisms with essential hypertension. Hence, findings for this study do not support a role for these genes in human hypertension
    corecore