21 research outputs found
Comparative study on abortion characteristics of Nsa CMS and Pol CMS and analysis of long non-coding RNAs related to pollen abortion in Brassica napus
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion
S1 Table -
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.</div
S2 Table -
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.</div
Gene ontology (GO) function enrichment analysis, GO terms of differentially expressed genes in rapeseed buds.
a: 1258A_SB vs_1258A_MB top 30 GO terms. b: P5A_SB_vs_P5A_MB top 30 GO terms. c: P26R_SB_vs_P26R_MB top 30 GO terms. GO enrichment analysis of DE genes with a p-value < 0.05.</p
Physiological and biochemical indexes for 1258A and P5A anthers at different periods of development.
A-F: sucrose, soluble sugar, ATP, Pro, MDA, H2O2, POD and SOD content. Duncan’ multiple range tests was used to analyze the data. The lower case letters in the figure represent the comparison at the level of 0.05. The same letter indicates that the difference is not significant, and the different letters indicate that the difference is significant.</p
Fig 2 -
Semi-thin sections to observe anter of 1258A (A–E) and P5A (F–J) during pollen develop. (A, F) Sporogenous cell differentiation stage; (B, G) microspore tetrad stage; (C, H) single nucleus pollen grain stage; (D, I) mature pollen grain stage; (E, J) pollen release period. E, epidermis; En, endothecium; FL, fibrous layer; ML, middle layer; SP, sporogenous cell; T, tapetum; Td, Tetrad; Ms, microspore; V, vascular region. Bar = 50μm.</p
Number of lncRNA and mRNA.
a: Venn diagram for predicting the number of novel lncRNA by three methods. b: Statistical histogram for transcripts: abscissa is the transcript type; ordinate is the number of transcripts corresponding to that transcript type.</p
Statistical analysis of lncRNA and mRNA that were differentially expressed at different stages of pollen development.
a: Venn diagram of differentially expressed lncRNA in different sizes buds of 1258A, P5A, and P26R. b: Venn diagram of differentially expressed mRNA in differently sized buds of 1258A, P5A, and P26R. c: Statistical results of up-regulated and down-regulated lncRNA and mRNA in different sizes buds of 1258A, P5A, and P26R.</p
S4 Table -
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.</div
S5 Table -
Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes β-D-glucopyranosyl abscisate β-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.</div