35 research outputs found

    Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal

    Get PDF
    Unlike most known flaviviruses (Family, Flaviviridae: Genus, Flavivirus), insect-only flaviviruses are a unique group of flaviviruses that only infect invertebrates. The study of insect-only flaviviruses has increased in recent years due to the discovery and characterization of numerous novel flaviviruses from a diversity of mosquito species around the world. The widespread discovery of these viruses has prompted questions regarding flavivirus evolution and the potential impact of these viruses on the transmission of flaviviruses of public health importance such as WNV. Therefore, we tested the effect of Culex flavivirus Izabal (CxFV Izabal), an insect-only flavivirus isolated from Culex quinquefasciatus mosquitoes in Guatemala, on the growth and transmission of a strain of WNV isolated concurrently from the same mosquito species and location. Prior infection of C6/36 (Aedes albopictus mosquito) cells or Cx. quinquefasciatus with CxFV Izabal did not alter the replication kinetics of WNV, nor did it significantly affect WNV infection, dissemination, or transmission rates in two different colonies of mosquitoes that were fed blood meals containing varying concentrations of WNV. These data demonstrate that CxFV probably does not have a significant effect on WNV transmission efficiency in nature

    Reduced fecundity is the cost of cheating in RNA virus phi6.

    No full text
    Co-infection by multiple viruses affords opportunities for the evolution of cheating strategies to use intracellular resources. Cheating may be costly, however, when viruses infect cells alone. We previously allowed the RNA bacteriophage phi6 to evolve for 250 generations in replicated environments allowing co-infection of Pseudomonas phaseolicola bacteria. Derived genotypes showed great capacity to compete during co-infection, but suffered reduced performance in solo infections. Thus, the evolved viruses appear to be cheaters that sacrifice between-host fitness for within-host fitness. It is unknown, however, which stage of the lytic growth cycle is linked to the cost of cheating. Here, we examine the cost through burst assays, where lytic infection can be separated into three discrete phases (analogous to phage life history): dispersal stage, latent period (juvenile stage), and burst (adult stage). We compared growth of a representative cheater and its ancestor in environments where the cost occurs. The cost of cheating was shown to be reduced fecundity, because cheaters feature a significantly smaller burst size (progeny produced per infected cell) when infecting on their own. Interestingly, latent period (average burst time) of the evolved virus was much longer than that of the ancestor, indicating the cost does not follow a life history trade-off between timing of reproduction and lifetime fecundity. Our data suggest that interference competition allows high fitness of derived cheaters in mixed infections, and we discuss preferential encapsidation as one possible mechanism
    corecore