348 research outputs found

    What Powered the Optical Transient AT2017gfo Associated with GW170817?

    Full text link
    The groundbreaking discovery of the optical transient AT2017gfo associated with GW170817 opens a unique opportunity to study the physics of double neutron star (NS) mergers. We argue that the standard interpretation of AT2017gfo as being powered by radioactive decay of r-process elements faces the challenge of simultaneously accounting for the peak luminosity and peak time of the event, as it is not easy to achieve the required high mass, and especially the low opacity of the ejecta required to fit the data. A plausible solution would be to invoke an additional energy source, which is probably provided by the merger product. We consider energy injection from two types of the merger products: (1) a post-merger black hole powered by fallback accretion; and (2) a long-lived NS remnant. The former case can only account for the early emission of AT2017gfo, with the late emission still powered by radioactive decay. In the latter case, both early- and late-emission components can be well interpreted as due to energy injection from a spinning-down NS, with the required mass and opacity of the ejecta components well consistent with known numerical simulation results. We suggest that there is a strong indication that the merger product of GW170817 is a long-lived (supramassive or even permanently stable), low magnetic field NS. The result provides a stringent constraint on the equations of state of NSs

    Studying newborn neutron stars by the transient emission after stellar collapses and compact binary mergers

    Full text link
    The formation of neutron stars (NSs), both from collapses of massive stars and mergers of compact objects, can be usually indicated by bright transients emitted from explosively-ejected material. In particular, if the newborn NSs can rotate at a millisecond period and have a sufficiently high magnetic field, then the spin-down of the NSs would provide a remarkable amount of energy to the emitting material. As a result, super-luminous supernovae could be produced in the massive stellar collapse cases, while some unusual fast evolving and luminous optical transients could arise from the cases of NS mergers and accretion-induced collapses of white dwarfs. In all cases, if the dipolar magnetic fields of the newborn NSs can be amplified to be as high as 101510^{15} G, a relativistic jet could be launched and then a gamma-ray burst can be produced as the jet successfully breaks out from the surrounding nearly-isotropic ejected material.Comment: 10 pages, 9 pictures, to appear in the AIP Proceedings of the Xiamen-CUSTIPEN Workshop on the EOS of Dense Neutron-Rich Matter in the Era of Gravitational Wave Astronomy, Jan. 3-7, Xiamen, Chin

    Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities

    Full text link
    We propose and analyze a hybrid device by integrating a microscale diamond beam with a single built-in nitrogen-vacancy (NV) center spin to a superconducting coplanar waveguide (CPW) cavity. We find that under an ac electric field the quantized motion of the diamond beam can strongly couple to the single cavity photons via dielectric interaction. Together with the strong spin-motion interaction via a large magnetic field gradient, it provides a hybrid quantum device where the dia- mond resonator can strongly couple both to the single microwave cavity photons and to the single NV center spin. This enables coherent information transfer and effective coupling between the NV spin and the CPW cavity via mechanically dark polaritons. This hybrid spin-electromechanical de- vice, with tunable couplings by external fields, offers a realistic platform for implementing quantum information with single NV spins, diamond mechanical resonators, and single microwave photons.Comment: Accepted by Phys. Rev. Applie

    Capn2 Correlates With insulin Resistance States in Pcos as Evidenced By Multi-Dataset analysis

    Get PDF
    OBJECTIVE: IR emerges as a feature in the pathophysiology of PCOS, precipitating ovulatory anomalies and endometrial dysfunctions that contribute to the infertility challenges characteristic of this condition. Despite its clinical significance, a consensus on the precise mechanisms by which IR exacerbates PCOS is still lacking. This study aims to harness bioinformatics tools to unearth key IR-associated genes in PCOS patients, providing a platform for future therapeutic research and potential intervention strategies. METHODS: We retrieved 4 datasets detailing PCOS from the GEO, and sourced IRGs from the MSigDB. We applied WGCNA to identify gene modules linked to insulin resistance, utilizing IR scores as a phenotypic marker. Gene refinement was executed through the LASSO, SVM, and Boruta feature selection algorithms. qPCR was carried out on selected samples to confirm findings. We predicted both miRNA and lncRNA targets using the ENCORI database, which facilitated the construction of a ceRNA network. Lastly, a drug-target network was derived from the CTD. RESULTS: Thirteen genes related to insulin resistance in PCOS were identified via WGCNA analysis. LASSO, SVM, and Boruta algorithms further isolated CAPN2 as a notably upregulated gene, corroborated by biological verification. The ceRNA network involving lncRNA XIST and hsa-miR-433-3p indicated a possible regulatory link with CAPN2, supported by ENCORI database. Drug prediction analysis uncovered seven pharmacological agents, most being significant regulators of the endocrine system, as potential candidates for addressing insulin resistance in PCOS. CONCLUSIONS: This study highlights the pivotal role of CAPN2 in insulin resistance within the context of PCOS, emphasizing its importance as both a critical biomarker and a potential therapeutic target. By identifying CAPN2, our research contributes to the expanding evidence surrounding the CAPN family, particularly CAPN10, in insulin resistance studies beyond PCOS. This work enriches our understanding of the mechanisms underlying insulin resistance, offering insights that bridge gaps in the current scientific landscape

    Micropathogen community analysis in Hyalomma rufipes via high-throughput sequencing of small RNAs

    Get PDF
    Ticks are important vectors in the transmission of a broad range of micropathogens to vertebrates, including humans. Because of the role of ticks in disease transmission, identifying and characterizing the micropathogen profiles of tick populations have become increasingly important. The objective of this study was to survey the micropathogens of Hyalomma rufipes ticks. Illumina HiSeq2000 technology was utilized to perform deep sequencing of small RNAs (sRNAs) extracted from field-collected H. rufipes ticks in Gansu Province, China. The resultant sRNA library data revealed that the surveyed tick populations produced reads that were homologous to St. Croix River Virus (SCRV) sequences. We also observed many reads that were homologous to microbial and/or pathogenic isolates, including bacteria, protozoa, and fungi. As part of this analysis, a phylogenetic tree was constructed to display the relationships among the homologous sequences that were identified. The study offered a unique opportunity to gain insight into the micropathogens of H. rufipes ticks. The effective control of arthropod vectors in the future will require knowledge of the micropathogen composition of vectors harboring infectious agents. Understanding the ecological factors that regulate vector propagation in association with the prevalence and persistence of micropathogen lineages is also imperative. These interactions may affect the evolution of micropathogen lineages, especially if the micropathogens rely on the vector or host for dispersal. The sRNA deep-sequencing approach used in this analysis provides an intuitive method to survey micropathogen prevalence in ticks and other vector species
    corecore