227 research outputs found

    Controllable Operations of Edge States in Cross-One-dimensional Topological Chains

    Full text link
    Topological edge states are recently attracting intense interest due to their robustness in the presence of disorder and defects. However, most approaches for manipulating such states require global modulations of the system's Hamiltonian. In this work, we develop a method to control edge states using local interactions of a four-node junction between cross-one-dimensional topological atomic chains. These junction interactions can give rise to tunable couplings between the hybridized edge states within different geometric symmetry, allowing us to implement robust quantum state transfer and SWAP gate between the two topological chains, where the edge states are pair-encoded as a single qubit. Moreover, when the atoms are precisely positioned to couple waveguides, the correlated decay caused by the environment enables the anti-symmetric edge states to present subradiant dynamics and thus show extremely long coherence time. These findings open up new possibilities for quantum technologies with topological edge states in the future.Comment: 7 pages, 4 figure

    Ultrastrong coupling phenomena beyond the Dicke model

    Get PDF
    We study effective light-matter interactions in a circuit QED system consisting of a single LCLC resonator, which is coupled symmetrically to multiple superconducting qubits. Starting from a minimal circuit model, we demonstrate that in addition to the usual collective qubit-photon coupling the resulting Hamiltonian contains direct qubit-qubit interactions, which have a drastic effect on the ground and excited state properties of such circuits in the ultrastrong coupling regime. In contrast to a superradiant phase transition expected from the standard Dicke model, we find an opposite mechanism, which at very strong interactions completely decouples the photon mode and projects the qubits into a highly entangled ground state. These findings resolve previous controversies over the existence of superradiant phases in circuit QED, but they more generally show that the physics of two- or multi-atom cavity QED settings can differ significantly from what is commonly assumed.Comment: 11 pages, 8 figure

    A universal time-dependent control scheme for realizing arbitrary bosonic unitaries

    Full text link
    We study the implementation of arbitrary unitary transformations between two sets of NN stationary bosonic modes, which are connected through a photonic quantum channel. By controlling the individual couplings between the modes and the channel, an initial NN-partite quantum state in register A can be released as a multi-photon wavepacket and, successively, be reabsorbed in register B. Here we prove that there exists a set of control pulses that implement this transfer with arbitrarily high fidelity and, simultaneously, realize a pre-specified N×NN\times N unitary transformation between the two sets of modes. Moreover, we provide a numerical algorithm for constructing these control pulses and discuss the scaling and robustness of this protocol in terms of several illustrative examples. By being purely control-based and not relying on any adaptions of the underlying hardware, the presented scheme is extremely flexible and can find widespread applications, for example, for boson-sampling experiments, multi-qubit state transfer protocols or in continuous-variable quantum computing architectures.Comment: 7 pages, 4 figures + Supplementary material (4 pages, 1 figure

    Coherent Resonant Coupling between Atoms and a Mechanical Oscillator Mediated by Cavity-Vacuum Fluctuations

    Full text link
    We show that an atom can be coupled to a mechanical oscillator via quantum vacuum fluctuations of a cavity field enabling energy transfer processes between them. In a hybrid quantum system consisting of a cavity resonator with a movable mirror and an atom, these processes are dominated by two pair-creation mechanisms: the counter-rotating (atom-cavity system) and dynamical Casimir interaction terms (optomechanical system). Because of these two pair-creation mechanisms, the resonant atom-mirror coupling is the result of high-order virtual processes with different transition paths well described in our theoretical framework. We perform a unitary transformation to the atom-mirror system Hamiltonian, exhibiting two kinds of multiple-order transitions of the pair creation. By tuning the frequency of the atom, we show that photon frequency conversion can be realized within a cavity of multiple modes. Furthermore, when involving two atoms coupled with the same mechanical mode, a single vibrating excitation of the mechanical oscillator can be simultaneously absorbed by the two atoms. Considering recent advances in strong and ultrastrong coupling for cavity optomechanics and other systems, we believe our proposals can be implemented using available technology.Comment: 18 pages, 13 figur

    Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities

    Full text link
    We propose and analyze a hybrid device by integrating a microscale diamond beam with a single built-in nitrogen-vacancy (NV) center spin to a superconducting coplanar waveguide (CPW) cavity. We find that under an ac electric field the quantized motion of the diamond beam can strongly couple to the single cavity photons via dielectric interaction. Together with the strong spin-motion interaction via a large magnetic field gradient, it provides a hybrid quantum device where the dia- mond resonator can strongly couple both to the single microwave cavity photons and to the single NV center spin. This enables coherent information transfer and effective coupling between the NV spin and the CPW cavity via mechanically dark polaritons. This hybrid spin-electromechanical de- vice, with tunable couplings by external fields, offers a realistic platform for implementing quantum information with single NV spins, diamond mechanical resonators, and single microwave photons.Comment: Accepted by Phys. Rev. Applie
    • …
    corecore