28 research outputs found

    PP2A Inhibitors Arrest G2/M Transition Through JNK/Sp1-Dependent Down-Regulation of CDK1 and Autophagy-Dependent Up-Regulation of p21

    Get PDF
    Protein phosphatase 2A (PP2A) plays an important role in the control of the cell cycle. We previously reported that the PP2A inhibitors, cantharidin and okadaic acid (OA), efficiently repressed the growth of cancer cells. In the present study, we found that PP2A inhibitors arrested the cell cycle at the G2 phase through a mechanism that was dependent on the JNK pathway. Microarrays further showed that PP2A inhibitors induced expression changes in multiple genes that participate in cell cycle transition. To verify whether these expression changes were executed in a PP2A-dependent manner, we targeted the PP2A catalytic subunit (PP2Ac) using siRNA and evaluated gene expression with a microarray. After the cross comparison of these microarray data, we identified that CDK1 was potentially the same target when treated with either PP2A inhibitors or PP2Ac siRNA. In addition, we found that the down-regulation of CDK1 occurred in a JNK-dependent manner. Luciferase reporter gene assays demonstrated that repression of the transcription of CDK1 was executed through the JNK-dependent activation of the Sp1 transcription factor. By constructing deletion mutants of the CDK1 promoter and by using ChIP assays, we identified an element in the CDK1 promoter that responded to the JNK/Sp1 pathway after stimulation with PP2A inhibitors. Cantharidin and OA also up-regulated the expression of p21, an inhibitor of CDK1, via autophagy rather than PP2A/JNK pathway. Thus, this present study found that the PP2A/JNK/Sp1/CDK1 pathway and the autophagy/p21 pathway participated in G2/M cell cycle arrest triggered by PP2A inhibitors

    Establishment of a pig model of combined pancreas-kidney transplantation

    No full text

    Silencing of glutathione peroxidase 3 through DNA hypermethylation is associated with lymph node metastasis in gastric carcinomas.

    Get PDF
    Gastric cancer remains the second leading cause of cancer-related death in the world. H. pylori infection, a major risk factor for gastric cancer, generates high levels of reactive oxygen species (ROS). Glutathione peroxidase 3 (GPX3), a plasma GPX member and a major scavenger of ROS, catalyzes the reduction of hydrogen peroxide and lipid peroxides by reduced glutathione. To study the expression and gene regulation of GPX3, we examined GPX3 gene expression in 9 gastric cancer cell lines, 108 primary gastric cancer samples and 45 normal gastric mucosa adjacent to cancers using quantitative real-time RT-PCR. Downregulation or silencing of GPX3 was detected in 8 of 9 cancer cell lines, 83% (90/108) gastric cancers samples, as compared to non-tumor adjacent normal gastric samples (P<0.0001). Examination of GPX3 promoter demonstrated DNA hypermethylation (≥ 10% methylation level determined by Bisulfite Pyrosequencing) in 6 of 9 cancer cell lines and 60% of gastric cancer samples (P = 0.007). We also detected a significant loss of DNA copy number of GPX3 in gastric cancers (P<0.001). Treatment of SNU1 and MKN28 cells with 5-Aza-2' Deoxycytidine restored the GPX3 gene expression with a significant demethylation of GPX3 promoter. The downregulation of GPX3 expression and GPX3 promoter hypermethylation were significantly associated with gastric cancer lymph node metastasis (P = 0.018 and P = 0.029, respectively). We also observed downregulation, DNA copy number losses, and promoter hypermethylation of GPX3 in approximately one-third of tumor-adjacent normal gastric tissue samples, suggesting the presence of a field defect in areas near tumor samples. Reconstitution of GPX3 in AGS cells reduced the capacity of cell migration, as measured by scratch wound healing assay. Taken together, the dysfunction of GPX3 in gastric cancer is mediated by genetic and epigenetic alterations, suggesting impairment of mechanisms that regulate ROS and its possible involvement in gastric tumorigenesis and metastasis

    Silencing of Glutathione Peroxidase 3 through DNA Hypermethylation Is Associated with Lymph Node Metastasis in Gastric Carcinomas

    Get PDF
    Gastric cancer remains the second leading cause of cancer-related death in the world. H. pylori infection, a major risk factor for gastric cancer, generates high levels of reactive oxygen species (ROS). Glutathione peroxidase 3 (GPX3), a plasma GPX member and a major scavenger of ROS, catalyzes the reduction of hydrogen peroxide and lipid peroxides by reduced glutathione. To study the expression and gene regulation of GPX3, we examined GPX3 gene expression in 9 gastric cancer cell lines, 108 primary gastric cancer samples and 45 normal gastric mucosa adjacent to cancers using quantitative real-time RT-PCR. Downregulation or silencing of GPX3 was detected in 8 of 9 cancer cell lines, 83% (90/108) gastric cancers samples, as compared to non-tumor adjacent normal gastric samples (P<0.0001). Examination of GPX3 promoter demonstrated DNA hypermethylation (≥10% methylation level determined by Bisulfite Pyrosequencing) in 6 of 9 cancer cell lines and 60% of gastric cancer samples (P = 0.007). We also detected a significant loss of DNA copy number of GPX3 in gastric cancers (P<0.001). Treatment of SNU1 and MKN28 cells with 5-Aza-2′ Deoxycytidine restored the GPX3 gene expression with a significant demethylation of GPX3 promoter. The downregulation of GPX3 expression and GPX3 promoter hypermethylation were significantly associated with gastric cancer lymph node metastasis (P = 0.018 and P = 0.029, respectively). We also observed downregulation, DNA copy number losses, and promoter hypermethylation of GPX3 in approximately one-third of tumor-adjacent normal gastric tissue samples, suggesting the presence of a field defect in areas near tumor samples. Reconstitution of GPX3 in AGS cells reduced the capacity of cell migration, as measured by scratch wound healing assay. Taken together, the dysfunction of GPX3 in gastric cancer is mediated by genetic and epigenetic alterations, suggesting impairment of mechanisms that regulate ROS and its possible involvement in gastric tumorigenesis and metastasis

    Development of a gene therapy strategy to target hepatocellular carcinoma based inhibition of protein phosphatase 2A using the α-fetoprotein promoter enhancer and <it>pgk</it> promoter: an <it>in vitro</it> and <it>in vivo</it> study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. Current therapies are insufficient, making HCC an intractable disease. Our previous studies confirmed that inhibition of protein phosphatase 2A (PP2A) may provide a promising therapeutic strategy for cancer. Unfortunately, constitutive expression of PP2A in normal tissues limits the application of PP2A inhibition. Thus, a HCC-specific gene delivery system should be developed. The α-fetoprotein (<it>AFP</it>) promoter is commonly used in HCC-specific gene therapy strategies; however, the utility of this approach is limited due to the weak activity of the <it>AFP</it> promoter. It has been shown that linking the <it>AFP</it> enhancer with the promoter of the non-tissue-specific, human housekeeping phosphoglycerate kinase (<it>pgk</it>) gene can generate a strong and HCC-selective promoter.</p> <p>Methods</p> <p>We constructed a HCC-specific gene therapy system to target PP2A using the <it>AFP</it> enhancer/<it>pgk</it> promoter, and evaluated the efficiency and specificity of this system both <it>in vitro</it> and <it>in vivo</it>.</p> <p>Results</p> <p><it>AFP</it> enhancer/<it>pgk</it> promoter-driven expression of the dominant negative form of the PP2A catalytic subunit α (DN-PP2Acα) exerted cytotoxic effects against an AFP-positive human hepatoma cell lines (HepG2 and Hep3B), but did not affect AFP-negative human hepatoma cells (SK-HEP-1) or normal human liver cells (L-02). Moreover, <it>AFP</it> enhancer/<it>pgk</it> promoter driven expression of DN-PP2Acα inhibited the growth of AFP-positive HepG2 tumors in nude mice bearing solid tumor xenografts, but did not affect AFP-negative SK-HEP-1 tumors.</p> <p>Conclusions</p> <p>The novel approach of <it>AFP</it> enhancer/<it>pgk</it> promoter-driven expression of DN-PP2Acα may provide a useful cancer gene therapy strategy to selectively target HCC.</p

    GPX3 is downregulated in gastric cancers.

    No full text
    <p>108 gastric cancer samples and 45 tumor-adjacent histologically normal gastric mucosa samples were analyzed by real-time RT-PCR for GPX3 expression, which was significantly downregulated in gastric cancers as compared to adjacent normal samples (A). A similar result was confirmed in 24 matched normal and tumor samples from the same patients (B).</p

    GPX3 promoter methylation level inversely correlates with GPX3 gene expression.

    No full text
    <p>(A) GPX3 expression level in gastric cancers with GPX3 hypermethylation (≥10%) was significantly lower than that in gastric cancers without hypermethylation (<10%). (B) Spearman analysis of all normal and tumor samples with GPX3 gene expression and DNA methylation demonstrated a significant inverse correlation(r = −0.32) between DNA hypermethylation and gene expression.</p

    Reconstitution of GPX3 expression suppressed tumor cell migration.

    No full text
    <p>AGS cells were infected with Ad-GPX3 and Ad-CTRL. When cells were confluent (48 hours after viral infection), a scratch wound healing assay was performed. The scratch gap was periodically monitored and recorded.</p
    corecore