18 research outputs found

    Ultrasound-Guided Fine-Needle Aspiration Biopsy in Unselected Consecutive Patients with Thyroid Nodules

    Get PDF
    The objective was to analyze the results of UG-FNAB, performed in unselected consecutive patients with thyroid nodules. Methods. The UG-FNAB records were analyzed in this retrospective study. Indication for biopsy was the presence of at least one nodule detected by ultrasound. Results. 330 patients at mean age ± SD 48.4 ± 11.2 years; women/men = 12.8/1 were analyzed. From the total 596 nodules found 546 (91.6%) were investigated with 1231 punctures (2.3 per nodule and 3.7 per patient). Benign solitary nodules had 42.7%, multinodular goiter (MNG) 44.8%, inconclusive 4.8%, and others 2.1% and malignant nodules 5.5% of the patients (6.6% of solitary and 5.1% of MNG patients). The risk for a separate nodule in MNG to be malignant was 2.7%. Conclusions. UG-FNAB is a safe and reliable diagnostic approach for thyroid nodules. It is the method of choice for hypo- and isoechoic not purely cystic solitary nodules, regardless of the nodule size. In MNG, its positive predictive value and diagnostic accuracy are lower. The final decision for regular US monitoring, UG-FNAB of the dominant nodule, multipuncture UG-FNAB or surgical exploration is one of complex appraisal. We consider UG-FNAB appropriate for most nodules in MNG, according to the above mentioned criteria

    Inositol(s) from Bench to Bedside in Endocrinology and Gynecology

    Get PDF
    The family of inositol(s) is a primordial group of ubiquitary molecules, which appeared at the beginning of evolution of life. Nature has used inositol(s) for several biological functions exploiting minimal changes in the structure. This family plays a pivotal role in regulating many metabolic pathways and hormonal signalling, and its essential function is well known in reproduction process. Plenty of experimental and clinical data have shown that inositols play a pivotal role, as drugs, in treating several pathologies such as PCOS, metabolic syndrome, and gestational diabetes; these natural molecules allow avoiding congenital anomalies and they are very effective in improving assisted reproduction technology (ART); moreover, they have demonstrated promising anticancer activities as shown in numerous studies. This special issue will take in consideration reviews, original research articles, short communications, and any scientific contribution providing both new insights from old data and updated results from experimental or clinical studies, thus pushing forward the boundaries of knowledge of inositol(s) in endocrinology and gynecology

    PCOS and inositols: controversial results and necessary clarifications. Basic differences between D-chiro and myo-inositol

    Get PDF
    Myo-Inositol (myo-Ins) and its phosphate derivatives—including inositol phosphates (InsPs), inositol pyrophosphates (IPPs) and phosphatidyl-inositol phosphate (PtdIns)—are credited to act as second messengers, which accumulate rapidly and transiently in response to external or endocrine signals, a phenomenon that allows signaling to be discrete and regulated (1, 2). Noticeably, inositol is involved in the transduction of several endocrine signals, including insulin (3, 4), thyroid hormones (5), gonadotropins (6), lipids with hormone-like activity (as prostaglandins) (7), and many other endocrine systems (8). Namely, in the last decade, a growing body of clinical and experimental research provided robust evidence about the efficiency of inositol in reversing a few clinical, metabolic, and endocrine features of the Polycystic Ovary Syndrome (PCOS). Myo-inositol, alone or in combination with its isomer D-Chiro-Inositol (D-Chiro-Ins), showed to exert a variable—albeit significant—effect in improving both symptoms and outcome in PCOS patients (9). Experimental and pilot clinical studies pointed out that a combination of both isomers could provide a reliable rationale for establishing a proper treatment strategy, as first suggested by Beemster’s seminal study (10, 11). However, the proper formula—i.e., the respective percentage of myo-Ins and D-Chiro-Ins—is still a matter of debate. In several cases, no conclusive insights can be obtained from clinical trials based on unclear rational design, limited number of recruited patients and variable formula composition and dosage(s). First, it is improper to compare clinical results from studies in which commercial nutraceutical formulas involve a wide range of concentrations (Table 1), with the myo-Ins/D-Chiro-Ins ratio varying implausibly from 0.4:1 to 104:1. Current commercial preparations also contain D-Chiro-Ins alone at concentrations reaching 600 mg that can be administered once or twice a day. Therefore, the daily dose of D-chiro-Ins, alone or with myo-Ins, ranges from low (less than 300 mg/die), medium (300–600 mg/die) and high (600–1,200 mg/die)

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to <90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], >300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of <15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P<0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P<0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Effects of Inositol(s) in Women with PCOS: A Systematic Review of Randomized Controlled Trials

    Get PDF
    Polycystic ovary syndrome (PCOS) is a common endocrine disorder, with complex etiology and pathophysiology, which remains poorly understood. It affects about 5–10% of women of reproductive age who typically suffer from obesity, hyperandrogenism, ovarian dysfunction, and menstrual irregularity. Indeed, PCOS is the most common cause of anovulatory infertility in industrialized nations, and it is associated with insulin resistance, type 2 diabetes mellitus, and increased cardiovascular risk. Although insulin resistance is not included as a criterion for diagnosis, it is a critical pathological condition of PCOS. The purpose of this systematic review is the analysis of recent randomized clinical trials of inositol(s) in PCOS, in particular myo- and D-chiro-inositol, in order to better elucidate their physiological involvement in PCOS and potential therapeutic use, alone and in conjunction with assisted reproductive technologies, in the clinical treatment of women with PCOS

    Inositols in the ovaries: activities and potential therapeutic applications

    No full text
    Introduction: Myo-inositol (MI) and D-chiro-inositol (DCI) play a key role in ovarian physiology, as they are second messengers of insulin and gonadotropins. Ex-vivo and in-vitro experiments demonstrate that both isomers are deeply involved in steroid biosynthesis, and that reduced MI-to-DCI ratios are associated with pathological imbalance of sex hormones. Areas covered: This expert opinion provides an overview of the physiological distribution of MI and DCI in the ovarian tissues, and a thorough insight of their involvement into ovarian steroidogenesis. Insulin resistance and compensatory hyperinsulinemia dramatically reduce the MI-to-DCI ratio in the ovaries, leading to gynecological disorders characterized by hyperandrogenism, altered menstrual cycle and infertility. Expert opinion: Available evidence indicates that MI and DCI have very specific physiological roles and, seemingly, physiological MI-to-DCI ratios in the ovaries are crucial to maintain the correct homeostasis of steroids. Inositol treatments should be evaluated on the patients' specific conditions and needs, as long-term supplementation of high doses of DCI may cause detrimental effects on the ovarian functionality. In addition, the effects of inositol therapy on the different PCOS phenotypes should be further investigated in order to better tailor the supplementation

    Inositols in Polycystic Ovary Syndrome: An Overview on the Advances

    No full text
    This review details the physiologic roles of two insulin sensitizers, myo-inositol (MI) and d-chiro-inositol (DCI). In the human ovary, MI is a second messenger of follicle-stimulating hormone (FSH) and DCI is an aromatase inhibitor. These activities allow a treatment for polycystic ovary syndrome (PCOS) to be defined based on the combined administration of MI and DCI, where the best MI:DCI ratio is 40:1. Moreover, MI enhances the effect of metformin and clomiphene on the fertility of PCOS women seeking pregnancy. As impaired intestinal transport may lead to unsuccessful inositol treatment, we also discuss new data on the use of alpha-lactalbumin to boost inositol absorption. Overall, the physiological activities of MI and DCI dictate the dosages and timing of inositol supplementation in the treatment of PCOS
    corecore