14 research outputs found

    The Evaluation and Quantitation of Dihydrogen Metabolism Using Deuterium Isotope in Rats

    Get PDF
    Despite the significant interest in molecular hydrogen as an antioxidant in the last eight years, its quantitative metabolic parameters in vivo are still lacking, as is an appropriate method for determination of hydrogen effectivity in the mammalian organism under various conditions.Intraperitoneally-applied deuterium gas was used as a metabolic tracer and deuterium enrichment was determined in the body water pool. Also, in vitro experiments were performed using bovine heart submitochondrial particles to evaluate superoxide formation in Complex I of the respiratory chain.A significant oxidation of about 10% of the applied dose was found under physiological conditions in rats, proving its antioxidant properties. Hypoxia or endotoxin application did not exert any effect, whilst pure oxygen inhalation reduced deuterium oxidation. During in vitro experiments, a significant reduction of superoxide formation by Complex I of the respiratory chain was found under the influence of hydrogen. The possible molecular mechanisms of the beneficial effects of hydrogen are discussed, with an emphasis on the role of iron sulphur clusters in reactive oxygen species generation and on iron species-dihydrogen interaction.According to our findings, hydrogen may be an efficient, non-toxic, highly bioavailable and low-cost antioxidant supplement for patients with pathological conditions involving ROS-induced oxidative stress

    Selected Risk Nutritional Factors for Chemotherapy-Induced Polyneuropathy

    No full text
    The present study seeks to identify the nutritional risk factors involved in the development of neuropathies induced by chemotherapeutic treatments. Unlike the gastrointestinal or hematological adverse effects of chemotherapy there is no protective treatment strategy for polyneuropathy. The aim of this study was to find possible deficiencies in nutritional factors, which can be used for supplementation in the future for prevention of chemotherapy-induced neuropathy development. We analyzed 70 patients undergoing paclitaxel chemotherapy and evaluated the risk factors involved in chemotherapy-induced peripheral neuropathy (CIPN). Several risk factors were considered in the development of CIPN, including deficiency of vitamin B1, B6, and D and fatty acids. The occurrence of CIPN complication in 60% cases was observed. We found significant differences in vitamin D and saturated fatty acid concentration. Vitamin D levels in the group without CIPN were estimated to be 38.2 (24.95, 47.63) nmol/L, whereas in the group with CIPN it was determined to be 25.6 (19.7, 32.55) nmol/L, p = 0.008. The level of total saturated fatty acids in the group without CIPN was of 32.613 Area % (31.322; 36.262), whereas in the group with CIPN it was of 34.209 Area % (32.86; 39.386), p = 0.01. The obtained results suggest a diet lower in saturated fatty acid content during chemotherapy. The most significant finding was that supplementation of vitamin D before chemotherapy could be an efficient neuroprotective in CIPN prophylaxis, as significantly lower levels 25OH derivative of vitamin D were observed in the CIPN group throughout the study period

    The Relationship of Nutritional Energy and Macronutrient Intake with Pregnancy Outcomes in Czech Pregnant Women

    No full text
    Maternal nutrition and metabolism play important roles for the well-being of both mother and fetus during pregnancy. This longitudinal study brings an original evaluation of the relationship between the nutritional energy and macronutrients intake (NEMI) and pregnancy outcomes and an assessment of the changes in such intake over the previous ten years. Sixty-five healthy Czech pregnant women were examined in three pregnancy periods (1st: 17th–27th; 2nd: 28th–35th; 3rd: 36th–38th gestational weeks). Results of 7-day dietary records were analyzed using NutriDan software. Energy intake decreased from 30.0 kcal/kg to 25.0 kcal/kg during pregnancy. The data also showed a decrease in macronutrients intake (p < 0.0001) with the advancing stage of pregnancy. Positive correlations were demonstrated between NEMI and birth weight (r = 0.410, p < 0.001). In the second pregnancy period, NEMI (excluding carbohydrates) positively associated with neonatal birth length (p < 0.01) and negatively with duration of birth (p < 0.05). An increased NEMI in the last period of pregnancy shortened the length of pregnancy

    DNA damage and arterial hypertension. A systematic review and meta-analysis

    No full text
    Oxidative DNA damage markers (8OHdG, comet assay, gammaH2AX) are becoming widely used in clinical cardiology research. To conduct this review of DNA damage in relation to hypertension in humans, we used databases (e.g. PubMed, Web of Science) to search for English-language publications up to June 30, 2022 and the terms: DNA damage, comet assay, gammaH2AX, 8OHdG, strand breaks, and arterial hypertension. Exclusion criteria were: children, absence of relevant controls, extra-arterial hypertensive issues, animal, cell lines. From a total of 79526, 15 human studies were selected. A total of 902 hypertensive patients (pts): (comet: N=418 pts; 8OHdG: N=484 pts) and 587 controls (comet: N=203; 8OHdG: N=384) were included. DNA damage was significantly higher in hypertensive pts than healthy controls (comet 26.6±11.0 vs 11.7±4.07 arbitrary units /A.U./; P<0.05 and="" 8ohdg="" 13="" 1="" 4="" 12="" vs="" 6="" 97="" 2="" 67="" ng="" mg="" creatinine="" i=""> P<0.05) confirmed with meta-analysis for both. Greater DNA damage was observed in more adverse cases (concentric cardiac hypertrophy 43.4±15.4 vs 15.6±5.5; sustained/untreated hypertension 31.4±12.1 vs 14.2±5/35.0±5.0 vs 25.0 ±5.0; non-dippers 39.2±15.5 vs 29.4±11.1 A.U.; elderly 14.9±4.5 vs 9.3±4.1 ng/mg creatinine; without carvedilol 9.1±4.2 vs 5.7±3.9; with coronary heart disease 0.5±0.1 vs 0.2±0.1 ng/mL) (P<0.05) confirmed with meta-analysis. DNA damage correlated strongly positively with serum glycosylated haemoglobin (r=0.670; P<0.05) and negatively with total antioxidant status (r=-0.670 to -0.933; P<0.05). This is the first systematic review with meta-analysis showing that oxidative DNA damage was increased in humans with arterial hypertension compared to controls

    Critical evaluation of muscle mass loss as a prognostic marker of morbidity in critically ill patients and methods for its determination

    No full text
    Objective: Loss of muscle mass in critically ill patients is associated with serious consequences, such as prolonged mechanical ventilation, intensive care unit confinement, and higher mortality. Thus, monitoring muscle mass, and especially its decline, should provide a useful indicator of morbidity and mortality. Performing evaluations according only to body mass index is imperfect, therefore the aim of this article was to evaluate appropriate methods for muscle mass loss determination in ICU patients. Methods: For this review, the literature searches were conducted through Embase and Medline, PubMed and Google Scholar databases up to February 2018 for the following Medical Subject Headings terms muscle atrophy, protein catabolism, ICU-aquaired weakness, muscle muss loss, myolysis, critical illness, stress metabolism, computed tomography, magnetic resonance imaging, dual-energy X-ray absorptiometry, neutron activation analysis, anthropometric examination, determination of endogenous metabolites of the skeletal muscles, bioimpedance spectroscopy, ultrasound. Result: It appears that ultrasound, which is widely available in hospitals, is the most advantageous method. Muscle ultrasound is non-invasive, relatively inexpensive, and is a bedside method that is free of ionizing radiation. Furthermore, muscle ultrasound also seems to be valid in patients with severe fluid retention, which is a typical complication with other conventional methods. Conclusion: Early detection of critical illness neuromyo-pathy could be beneficial for improving the standards of intensive care, and thus reducing the risk of mortality in these patients

    Deuterium oxidation in vivo.

    No full text
    <p>Deuterium isotope excess in body water from deuterium gas oxidation in vivo (A) and oxidation percentage of supplied dose of deuterium gas (B).</p

    Antioxidants and vitamins in clinical conditions,”

    No full text
    Summary Various reactive oxygen species (ROS) may be produced from normal biochemical, essential metabolic processes or from external sources as exposure to a variety of agents presented in the environment. Lipids, proteins, carbohydrates and DNA are all capable of reacting with ROS and can be implicated in etiology of various human disorders (rheumatoid arthritis, reperfusion injury, atherosclerosis, lung diseases etc.). In the organism damage by ROS is counteracted with natural antioxidants (glutathione peroxidases, superoxide dismutases, catalase, glutathione, ubiquinol, uric acid, and essential minerals) and nutritional antioxidants from diet (i.e. vitamins E, C, carotenoids). Possible mechanisms of nutritional depletion and side effects of high intake are in the article described
    corecore