17 research outputs found

    DEPOSITION CARBON NANOSTRUCTURES BY SURFATRON GENERATED DISCHARGE

    Get PDF
    Carbon nanostructures were deposited by surface wave discharge using various Ar/CH4/ CO2 gas mixture ratios. The morphology was controlled by adjusting of gas concentration and was investigated by scanning electron microscopy (SEM). Also, the influence of the low temperature plasma treatment and process time on the wettability of the diamond films has been studied. The results indicate that for hydrogen termination of diamond surface indicate that the temperature as low as 400°C and treatment time of 15 min is sufficient to attain the p-type surface conductivity of diamond

    Studium fyzikalnich vlastnosti a aplikaci RF vicetryskoveho plazmochemickeho reaktoru

    No full text
    Available from STL Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi

    A positively biased external anode for energy control of plasma ions: hollow cathode and magnetron sputtering discharge

    No full text
    AbstractThe performance of a positively biased external ring anode in combination with a hollow cathode (HC) discharge or a magnetron sputtering (MS) discharge, both with a Ti cathode and with Ar as working gas, is investigated. Plasma and floating potential increase as function of anode voltage. Energy-resolved mass spectrometry reveals that the kinetic energy of argon and titanium ions is enhanced by a positive anode voltage allowing for an effective energy control of plasma ions

    Time-resolved optical emission spectroscopy of a unipolar and a bipolar pulsed magnetron sputtering discharge in an argon/oxygen gas mixture with a cobalt target

    No full text
    Abstract Reactive high power impulse magnetron sputtering (HiPIMS) of a cobalt cathode in pure argon gas and with different oxygen admixtures was investigated by time-resolved optical emission spectroscopy (OES) and time-integrated energy-resolved mass spectrometry. The HiPIMS discharge was operated with a bipolar pulsed power supply capable of providing a large negative voltage with a typical pulse width of 100 μs followed by a long positive pulse with a pulse width of about 350 μs. The HiPIMS plasma in pure argon is dominated by Co+ ions. With the addition of oxygen, O+ ions become the second most prominent positive ion species. OES reveals the presence of Ar I, Co I, O I, and Ar II emission lines. The transition from an Ar+ to a Co+ ion sputtering discharge is inferred from time-resolved OES. The enhanced intensity of excited Ar+* ions is explained by simultaneous excitation and ionisation induced by energetic secondary electrons from the cathode. The intensity of violet Ar I lines is drastically reduced during HiPIMS. Intensity of near-infrared Ar I lines resumes during the positive pulse indicating an additional heating mechanism

    DEPOSITION CARBON NANOSTRUCTURES BY SURFATRON GENERATED DISCHARGE

    No full text
    Carbon nanostructures were deposited by surface wave discharge using various Ar/CH<sub>4</sub>/ CO<sub>2</sub> gas mixture ratios. The morphology was controlled by adjusting of gas concentration and was investigated by scanning electron microscopy (SEM). Also, the influence of the low temperature plasma treatment and process time on the wettability of the diamond films has been studied. The results indicate that for hydrogen termination of diamond surface indicate that the temperature as low as 400°C and treatment time of 15 min is sufficient to attain the p-type surface conductivity of diamond

    TiO2 and Fe2O3 Films for Photoelectrochemical Water Splitting

    No full text
    Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functional properties such as simulated photoelectrochemical (PEC) water splitting conditions. It was revealed that the HiPIMS method already provides crystalline structures of anatase TiO2 and hematite Fe2O3 during the deposition, whereas to finalize the sol-gel route the as-deposited films must always be annealed to obtain the crystalline phase. Regarding the PEC activity, both TiO2 films show similar photocurrent density, but only when illuminated by UV light. A different situation was observed for hematite films where plasmatic films showed a tenfold enhancement of the stable photocurrent density over the sol-gel hematite films for both UV and visible irradiation. The superior properties of plasmatic films could be explained by ability to address some of the hematite drawbacks by the deposition of very thin films (25 nm) consisting of small densely packed particles and by doping with Sn
    corecore