227 research outputs found

    Measurement of the Multi-Neutron ΜˉΌ\bar{\nu}_{\mu} Charged Current Differential Cross Section at Low Available Energy on Hydrocarbon

    Full text link
    Neutron production in antineutrino interactions can lead to bias in energy reconstruction in neutrino oscillation experiments, but these interactions have rarely been studied. MINERvA previously studied neutron production at an average antineutrino energy of ~3 GeV in 2016 and found deficiencies in leading models. In this paper, the MINERvA 6 GeV average antineutrino energy data set is shown to have similar disagreements. A measurement of the cross section for an antineutrino to produce two or more neutrons and have low visible energy is presented as an experiment-independent way to explore neutron production modeling. This cross section disagrees with several leading models' predictions. Neutron modeling techniques from nuclear physics are used to quantify neutron detection uncertainties on this result.Comment: 25 pages, 11 figures; Added ancillary files with cross section values as .csv Matches preprint accepted by publishe

    Simultaneous measurement of muon neutrino quasielastic-like cross sections on CH, C, water, Fe, and Pb as a function of muon kinematics at MINERvA

    Get PDF
    This paper presents the first simultaneous measurement of the quasielastic-like neutrino-nucleus cross sections on C, water, Fe, Pb and scintillator (hydrocarbon or CH) as a function of longitudinal and transverse muon momentum. The ratio of cross sections per nucleon between Pb and CH is always above unity and has a characteristic shape as a function of transverse muon momentum that evolves slowly as a function of longitudinal muon momentum. The ratio is constant versus longitudinal momentum within uncertainties above a longitudinal momentum of 4.5GeV/c. The cross section ratios to CH for C, water, and Fe remain roughly constant with increasing longitudinal momentum, and the ratios between water or C to CH do not have any significant deviation from unity. Both the overall cross section level and the shape for Pb and Fe as a function of transverse muon momentum are not reproduced by current neutrino event generators. These measurements provide a direct test of nuclear effects in quasielastic-like interactions, which are major contributors to long-baseline neutrino oscillation data samples.Comment: 9 pages, 8 flgures, including supplemental materia

    Neutrino-induced coherent π+\pi^{+} production in C, CH, Fe and Pb at ⟹EΜ⟩∌6\langle E_{\nu}\rangle \sim 6 GeV

    Full text link
    MINERvA has measured the ΜΌ\nu_{\mu}-induced coherent π+\pi^{+} cross section simultaneously in hydrocarbon (CH), graphite (C), iron (Fe) and lead (Pb) targets using neutrinos from 2 to 20 GeV. The measurements exceed the predictions of the Rein-Sehgal and Berger-Sehgal PCAC based models at multi-GeV ΜΌ\nu_{\mu} energies and at produced π+\pi^{+} energies and angles, Eπ>1E_{\pi}>1 GeV and Ξπ<10∘\theta_{\pi}<10^{\circ}. Measurements of the cross-section ratios of Fe and Pb relative to CH reveal the effective AA-scaling to increase from an approximate A1/3A^{1/3} scaling at few GeV to an A2/3A^{2/3} scaling for EÎœ>10E_{\nu}>10 GeV
    • 

    corecore