216 research outputs found

    Microstructure of an Extruded Third-Generation Snack Made from a Whole Blue Corn and Corn Starch Mixture

    Get PDF
    Blue corn is a potential material for expanded snack production. Whole blue corn meal was mixed with corn starch and processed by extrusion to produce a third-generation snack. Optimum extrusion conditions were calculated with the response surface methodology using expansion index (EI), penetration force (PF), specific mechanical energy (SME) and total anthocyanins content (TAC). Optimum conditions (zone 1, 67°C; cooking zone, 123°C; zone 3, 75°C; feed moisture, 24.6%) were used to extrude the mixture in a single-screw extruder, and EI,PF,SME and TAC of the expanded pellet were compared against predicted optimum values. Starch structural changes in pellets and expanded were analyzed with DSC, viscosity profiles, x-ray diffraction and SEM. Extruded pellet did not differ (p>0.05) from the predicted. However, TAC was lower (p<0.05) in the expanded pellet. Structural analyses showed damage starch granular structure during extrusion and pellet expansion. Blue corn is a promising material for production of third-generation snacks

    Neutrino-induced coherent π+\pi^{+} production in C, CH, Fe and Pb at ⟨Eν⟩∼6\langle E_{\nu}\rangle \sim 6 GeV

    Full text link
    MINERvA has measured the νμ\nu_{\mu}-induced coherent π+\pi^{+} cross section simultaneously in hydrocarbon (CH), graphite (C), iron (Fe) and lead (Pb) targets using neutrinos from 2 to 20 GeV. The measurements exceed the predictions of the Rein-Sehgal and Berger-Sehgal PCAC based models at multi-GeV νμ\nu_{\mu} energies and at produced π+\pi^{+} energies and angles, Eπ>1E_{\pi}>1 GeV and θπ<10∘\theta_{\pi}<10^{\circ}. Measurements of the cross-section ratios of Fe and Pb relative to CH reveal the effective AA-scaling to increase from an approximate A1/3A^{1/3} scaling at few GeV to an A2/3A^{2/3} scaling for Eν>10E_{\nu}>10 GeV

    Simultaneous measurement of muon neutrino quasielastic-like cross sections on CH, C, water, Fe, and Pb as a function of muon kinematics at MINERvA

    Get PDF
    This paper presents the first simultaneous measurement of the quasielastic-like neutrino-nucleus cross sections on C, water, Fe, Pb and scintillator (hydrocarbon or CH) as a function of longitudinal and transverse muon momentum. The ratio of cross sections per nucleon between Pb and CH is always above unity and has a characteristic shape as a function of transverse muon momentum that evolves slowly as a function of longitudinal muon momentum. The ratio is constant versus longitudinal momentum within uncertainties above a longitudinal momentum of 4.5GeV/c. The cross section ratios to CH for C, water, and Fe remain roughly constant with increasing longitudinal momentum, and the ratios between water or C to CH do not have any significant deviation from unity. Both the overall cross section level and the shape for Pb and Fe as a function of transverse muon momentum are not reproduced by current neutrino event generators. These measurements provide a direct test of nuclear effects in quasielastic-like interactions, which are major contributors to long-baseline neutrino oscillation data samples.Comment: 9 pages, 8 flgures, including supplemental materia

    Simultaneous measurement of muon neutrino νμ\nu_\mu charged-current single π+\pi^+ production in CH, C, H2_2O, Fe, and Pb targets in MINERvA

    Full text link
    Neutrino-induced charged-current single π+\pi^+ production in the Δ(1232)\Delta(1232) resonance region is of considerable interest to accelerator-based neutrino oscillation experiments. In this work, high statistics differential cross sections are reported for the semi-exclusive reaction νμA→μ−π++\nu_\mu A \to \mu^- \pi^+ + nucleon(s) on scintillator, carbon, water, iron, and lead targets recorded by MINERvA using a wide-band νμ\nu_\mu beam with \left \approx 6~GeV. Suppression of the cross section at low Q2Q^2 and enhancement of low TπT_\pi are observed in both light and heavy nuclear targets compared to phenomenological models used in current neutrino interaction generators. The cross-section ratios for iron and lead compared to CH across the kinematic variables probed are 0.8 and 0.5 respectively, a scaling which is also not predicted by current generators.Comment: 6 pages, 6 figures, 117 pages of supplementary material; submitted to Physical Review Letter
    • …
    corecore