5 research outputs found

    Automated line scan analysis to quantify biosensor activity at the cell edge

    Get PDF
    Biosensors are valuable tools used to image the subcellular localization and kinetics of protein activity in living cells. Signaling at the edge of motile cells that regulates cell protrusion and retraction is important in many aspects of cell physiology, and frequently studied using biosensors. However, quantitation and interpretation is limited by the heterogeneity of this signaling behavior; automated analytical approaches are required to systematically extract large data sets from biosensor studies for statistical analysis. Here we describe an automated analysis to relate the velocity at specific points along the cell edge with biosensor activity in adjoining regions. Time series of biosensor images are processed to interpolate a smooth edge of the cell at each time point. Profiles of biosensor activity (‘line scans’) are then calculated along lines perpendicular to the cell edge. An energy minimization method is used to calculate a velocity associated with each line scan. Sorting line scans by the proximal velocity has generated novel biological insights, as exemplified by analysis of the Src merobody biosensor. With the large data sets that can be generated automatically by this program, conclusions can be drawn that are not apparent from qualitative or ‘manual’ quantitative techniques. Our ‘LineScan’ software includes a graphical user interface (GUI) to facilitate application in other studies. It is available at hahnlab.com and is exemplified here in a study using the RhoC FLARE biosensor

    FOXA1 and adaptive response determinants to HER2 targeted therapy in TBCRC 036

    Get PDF
    Inhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes. Motif analysis of lapatinib-responsive genomic regions implicated the pioneer transcription factor FOXA1 as a mediator of adaptive responses. Lapatinib in combination with FOXA1 depletion led to dysregulation of enhancers, impaired adaptive upregulation of HER3, and decreased proliferation. HER2-directed therapy using clinically relevant drugs (trastuzumab with or without lapatinib or pertuzumab) in a 7-day clinical trial designed to examine early pharmacodynamic response to antibody-based anti-HER2 therapy showed reduced FOXA1 expression was coincident with decreased HER2 and HER3 levels, decreased proliferation gene signatures, and increased immune gene signatures. This highlights the importance of the immune response to anti-HER2 antibodies and suggests that inhibiting FOXA1-mediated adaptive responses in combination with HER2 targeting is a potential therapeutic strategy

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Automated line scan analysis to quantify biosensor activity at the cell edge

    No full text
    Biosensors are valuable tools used to image the subcellular localization and kinetics of protein activity in living cells. Signaling at the edge of motile cells that regulates cell protrusion and retraction is important in many aspects of cell physiology, and frequently studied using biosensors. However, quantitation and interpretation is limited by the heterogeneity of this signaling behavior; automated analytical approaches are required to systematically extract large data sets from biosensor studies for statistical analysis. Here we describe an automated analysis to relate the velocity at specific points along the cell edge with biosensor activity in adjoining regions. Time series of biosensor images are processed to interpolate a smooth edge of the cell at each time point. Profiles of biosensor activity (‘line scans’) are then calculated along lines perpendicular to the cell edge. An energy minimization method is used to calculate a velocity associated with each line scan. Sorting line scans by the proximal velocity has generated novel biological insights, as exemplified by analysis of the Src merobody biosensor. With the large data sets that can be generated automatically by this program, conclusions can be drawn that are not apparent from qualitative or ‘manual’ quantitative techniques. Our ‘LineScan’ software includes a graphical user interface (GUI) to facilitate application in other studies. It is available at hahnlab.com and is exemplified here in a study using the RhoC FLARE biosensor

    Ras Family Proteins

    No full text
    corecore