19 research outputs found

    Measuring aberrations in lithographic projection systems with phase wheel targets

    Get PDF
    A significant factor in the degradation of nanolithographic image fidelity is optical wavefront aberration. Aerial image sensitivity to aberrations is currently much greater than in earlier lithographic technologies, a consequence of increased resolution requirements. Optical wavefront tolerances are dictated by the dimensional tolerances of features printed, which require lens designs with a high degree of aberration correction. In order to increase lithographic resolution, lens numerical aperture (NA) must continue to increase and imaging wavelength must decrease. Not only do aberration magnitudes scale inversely with wavelength, but high-order aberrations increase at a rate proportional to NA2 or greater, as do aberrations across the image field. Achieving lithographic-quality diffraction limited performance from an optical system, where the relatively low image contrast is further reduced by aberrations, requires the development of highly accurate in situ aberration measurement. In this work, phase wheel targets are used to generate an optical image, which can then be used to both describe and monitor aberrations in lithographic projection systems. The use of lithographic images is critical in this approach, since it ensures that optical system measurements are obtained during the system\u27s standard operation. A mathematical framework is developed that translates image errors into the Zernike polynomial representation, commonly used in the description of optical aberrations. The wavefront is decomposed into a set of orthogonal basis functions, and coefficients for the set are estimated from image-based measurements. A solution is deduced from multiple image measurements by using a combination of different image sets. Correlations between aberrations and phase wheel image characteristics are modeled based on physical simulation and statistical analysis. The approach uses a well-developed rigorous simulation tool to model significant aspects of lithography processes to assess how aberrations affect the final image. The aberration impact on resulting image shapes is then examined and approximations identified so the aberration computation can be made into a fast compact model form. Wavefront reconstruction examples are presented together with corresponding numerical results. The detailed analysis is given along with empirical measurements and a discussion of measurement capabilities. Finally, the impact of systematic errors in exposure tool parameters is measureable from empirical data and can be removed in the calibration stage of wavefront analysis

    Benefiting from Polarization - Effects on High-NA Imaging

    Get PDF
    The onset of lithographic technology involving extreme numerical aperture (NA) values introduces critical technical issues that are now receiving particular attention. Projection lithography with NA values above 0.90 is necessary for future generation devices. The introduction of immersion lithography enables even larger angles, resulting in NA values of 1.2 and above. The imaging effects from oblique angles, electric field polarization, optical interference, optical reflection, and aberration can be significant. This paper addresses polarization considerations at critical locations in the optical path of a projection system, namely in the illuminator, at the mask, and in the photoresist. Several issues are addressed including TE and azimuthal polarized illumination, wire grid polarization effects for real thin film mask materials, and multilayer resist AR coatings for high NA and polarization

    Automated Aberration Extraction Using Phase Wheel Targets

    Get PDF
    An approach to in-situ wavefront aberration measurement is explored. The test is applicable to sensing aberrations from the image plane of a microlithography projection system or a mask inspection tool. A set of example results is presented which indicate that the method performs well on lenses with a Strehl ratio above 0.97. The method uses patterns produced by an open phase figure1 to determine the deviation of the target image from its ideal shape due to aberrations. A numerical solution in the form of Zernike polynomial coefficients is reached by modeling the object interaction with aberrated pupil function using the nonlinear optimization routine over the possible deformations to give an accurate account of the image detail in 2-D. The numerical accuracy for the example below indicated superb performance of the chosen target shapes with only a single illumination setup

    25nm Immersion Lithography at a 193nm Wavelength

    Get PDF
    The physical limitations of lithographic imaging are ultimately imposed by the refractive indices of the materials involved. At oblique collection angles, the numerical aperture of an optical system is determined by nsin(theta) , where n is the lowest material refractive index (in the absence of any refractive power through curvature). For 193nm water immersion lithography, the fluid is the limiting material, with a refractive index of near 1.44, followed by the lens material (if planar) with a refractive index near 1.56, and the photoresist, with a refractive index near 1.75. A critical goal for immersion imaging improvement is to first increase the refractive indices of the weakest link, namely the fluid or the lens material. This paper will present an approach to immersion lithography that will allow for the exploration into the extreme limits of immersion lithography by eliminating the fluid altogether. By using a solid immersion lithography (SIL) approach, we have developed a method to contact the last element of an imaging system directly to the photoresist. Furthermore, by fabricating this last element as an aluminum oxide (sapphire) prism, we can increase its refractive index to a value near 1.92. The photoresist becomes the material with the lowest refractive index and imaging becomes possible down to 28nm for a resist index of 1.75 (and 25nm for a photoresist with a refractive index of 1.93). Imaging is based on two-beam Talbot interference of a phase grating mask, illuminated with highly polarized 193nm ArF radiation. Additionally, a roadmap is presented to show the possible extension of 193nm lithography to the year 2020

    Study of Air Bubble Induced Light Scattering Effect On Image Quality in 193 nm Immersion Lithography

    Get PDF
    As an emerging technique, immersion lithography offers the capability of reducing critical dimensions by increasing numerical aperture (NA) due to the higher refractive indices of immersion liquids than that of air. Among the candidates for immersion liquids, water appears to be an excellent choice due to its high transparency at a wavelength of 193 nm, as well as its immediate availability and low processing cost. However, in the process of forming a water fluid layer between the resist and lens surfaces, air bubbles are often created due to the high surface tension of water. The presence of air bubbles in the immersion layer will degrade the image quality because of the inhomogeneity induced light scattering in the optical path. Therefore, it is essential to understand the air bubble induced light scattering effect on image quality. Analysis by geometrical optics indicates that the total reflection of light causes the enhancement of scattering in the region where the scattering angle is less than the critical scattering angle, which is 92 degrees at 193 nm. Based on Mie theory, numerical evaluation of scattering due to air bubbles, polystyrene spheres and PMMA spheres was conducted for TE, TM or unpolarized incident light. Comparison of the scattering patterns shows that the polystyrene spheres and air bubbles resemble each other with respect to scattering properties. Hence polystyrene spheres are used to mimic air bubbles in studies of lithographic imaging of “bubbles” in immersion water. In direct interference lithography, it is found that polystyrene spheres (2 μm in diameter) 0.3 mm away from the resist surface would not image, while for interferometric lithography at 0.5NA, this distance is estimated to be 1.3 mm. Surprisingly, polystyrene spheres in diameter of 0.5 μm (which is 5 times larger than the interferometric line-width) will not image. It is proposed that “bubbles” are repelled from contact with the resist film by surface tension. The scatter of exposure light can be characterized as “flare”. This work shows that microbubbles are not a technical barrier to immersion lithography

    ILSim: A Compact Simulation Tool for Interferometric Lithography

    Get PDF
    Interference imaging systems are being used more extensively for R&D applications where NA manipulation, polarization control, relative beam attenuation, and other parameters are explored and projection imaging approaches may not exist. To facilitate interferometric lithography research, we have developed a compact simulation tool, ILSim, for studying multi-beam interferometric imaging, including fluid immersion lithography. The simulator is based on full-vector interference theory, which allows for application at extremely high NA values, such as those projected for use with immersion lithography. In this paper, ILSim is demonstrated for use with two-beam and four-beam interferometric immersion lithography. The simulation tool was written with Matlab, where the thin film assembly (ambient, top coat, resist layer, BARC layers, and substrate) and illumination conditions (wavelength, polarization state, interference angle, demodulation, NA) can be defined. The light intensity distributions within the resist film for 1 exposure or 2-pass exposure are displayed in the graph window. It also can optimize BARC layer thickness and top coat thickness

    In-situ Aberration Monitoring Using Phase Wheel Targets

    Get PDF
    Aberration metrology is critical to the manufacture of quality lithography lenses in order to meet strict optical requirements. Additionally, it is becoming increasingly important to be able to measure and monitor lens performance in an IC production environment on a regular basis. The lithographer needs to understand the influence of aberrations on imaging and any changes that may occur in the aberration performance of the lens between assembly and application, and over the course of using an exposure tool. This paper will present a new method for the detection of lens aberrations that may be employed during standard lithography operation. The approach allows for the detection of specific aberration types and trends, as well as levels of aberration, though visual inspection of high resolution images of resist patterns and fitting of the aberrated wavefront. The approach consists of a test target made up of a 180-degree phase pattern array in a “phase wheel” configuration. The circular phase regions in the phase wheel are arranged so that their response to lens aberration is interrelated and the regions respond uniquely to specific aberrations, depending on their location within the target. This test method offers an advantage because of the sensitivity to particular aberration types, the unique response of multiple zones of the test target to aberrations, and the ease with which aberrations can be distinguished. The method of lens aberration detection is based on the identification of the deviations that occur between the images printed with the phase wheel target and images that would be produced in the absence of aberration. This is carried out through the use of lithography simulation, where simulated images can be produced without aberration and with various levels of lens aberration. Comparisons of printed resist images to simulated resist images are made while the values of the coefficients for the primary Zernike aberrations are varied

    Immersion Microlithography at 193 nm with a Talbot Prism Interferometer

    Get PDF
    A Talbot interference immersion lithography system that uses a compact prism is presented. The use of a compact prism allows the formation of a fluid layer between the optics and the image plane, enhancing the resolution. The reduced dimensions of the system alleviate coherence requirements placed on the source, allowing the use of a compact ArF excimer laser. Photoresist patterns with a half-pitch of 45 nm were formed at an effective NA of 1.05. In addition, a variable-NA immersion interference system was used to achieve an effective NA of 1.25. The smallest half-pitch of the photoresist pattern produced with this system was 38 nm

    Calibration of Process and Electrical Models for RIT Vertical NPN Bipolar Junction Transistors

    Get PDF
    Presented study is based on the need in 2D process and device simulations providing a good estimation of in-line process and electrical parameters for RIT vertical NPN bipolar junction transistors. These involve process and electrical modeling adjustments in order to reproduce vertical dopant profiles and show an appropriate electrical behavior of simulated BJTs Technology Modeling Associates (TMA) software has been implemented to facilitate this task. Theoretical and experimental verification efforts have been performed to examine the validity of the simulation results, and good agreement has been obtained
    corecore