4 research outputs found

    Cryptocurrency

    Get PDF

    Hydrolysis of genotoxic methyl-substituted oxiranes : Experimental kinetic and semiempirical studies

    No full text
    The kinetics of acid-catalyzed hydrolysis of seven methylated aliphatic epoxides - R1R2C(O)CR3R4 (A: R1=R2=R3=R4=H; B: R1=R2=R3=H, R4=Me; C: R1=R2=H, R3=R4=Me; D: R1=R3=H, R2=R4=Me(trans); E: R1=R3=H, R2=R4=Me(cis); F: R1=R3=R4=Me, R2=H; G: R1=R2=R3=R4=Me) - has been studied at 36 ± 1.5°C. Compounds with two methyl groups at the same carbon atom of the oxirane ring exhibit highest rate constants (k(eff) in reciprocal molar concentration per second: 11.0 ± 1.3 for C, 10.7 ± 2.1 for F, and 8.7 ± 0.7 for G as opposed to 0.124 ± 0.003 for B, 0.305 ± 0.003 for D, and 0.635 ± 0.036 for E). Ethylene oxide (A) displays the lowest rate of hydrolysis (0.027 M-1 s-1). The results are consistent with literature data available for compounds A, B, and C. To model the reactivities we have employed quantum chemical calculations (MNDO, AM1, PM3, and MINDO/3) of the main reaction species. There is a correlation of the logarithm k(eff) with the total energy of epoxide ring opening. The best correlation coefficients (r) were obtained using the AM1 and MNDO methods (0.966 and 0.957, respectively). However, unlike MNDO, AM1 predicts approximately zero energy barriers for the oxirane ring opening of compounds B, C, E and G, which is not consistent with published kinetic data. Thus, the MNDO method provides a preferential means of modeling the acidic hydrolysis of the series of methylated oxiranes. The general ranking of mutagenicity in vitro, A > B > C, is in line with the concept that this sequence also gradually leaves the expoxide reactivity optimal for genotoxicity toward reactivities leading to higher biological detoxifications

    Carbon residual from the thermal processing of oil sludge as the basis for a fuel composition

    No full text
    Актуальность исследования обуславливается интересом к обеспечению тепловых затрат технологий переработки нефти за счет побочных продуктов (нефтешлама), а также необходимостью снижения вредных выбросов технологических процессов. Цель: исследование возможности сжигания углеродного остатка, полученного при паровой газификации нефтешлама, в составе топливной композиции с добавлением торфа. Объект: углеродистый остаток нефтешлама, полученный после паровой газификации нефтяного шлама при температуре 600 °С, и топливная композиция на его основе с добавлением торфа (25 мас. %). Методы. Теплотехнические характеристики исследуемых образцов определены согласно ГОСТ Р 55661-2013, 33503-2015 и 55660-2013. Значения теплоты сгорания установлены при помощи калориметра АБК-1 (РЭТ, Россия), элементный состав - на анализаторе Vario Micro Cube (Elementar, Германия). Размер частиц УОН установлен при помощи растрового электронного микроскопа JSM-6000C (JEOL, Япония). Исследование процесса горения рассматриваемых образцов осуществлено с помощью дифференциального-термического анализатора STA 449 F3 Jupiter (Netzsch, Germany) и экспериментального стенда, оборудованного высокоскоростной видеокамерой FASTCAM СА4 5 (Photron, США). Характерные температуры плавкости золы и её состав определены согласно ГОСТ 2057-94 и ГОСТ 10538-87 соответственно. Результаты. Углеродистый остаток нефтешлама имеет превышающую торф и сопоставимую с бурыми углями теплоту сгорания и довольно низкую температуру воспламенения (220 °C), что обусловлено довольно высоким содержанием летучих веществ (Vdaf =64,3 %). Однако высокие значения зольности (Ad=60 %) и содержания серы (Sdaf=4,3 %) указывают на необходимость утилизации большого количества золы и улавливания окислов серы SOx. Показано, что совместное сжигание углеродистого остатка и торфа (25 мас. %) позволило снизить количество образующегося зольного остатка. Помимо этого, при добавлении 25 мас. % суховского торфа удалось снизить количество образующихся выбросов SO2 более чем в 3 раза. Этот эффект обусловлен взаимодействием газовой фазы с минеральной частью торфа, а именно, с карбонатами кальция и магния.The relevance of the research is caused by the interest in ensuring the thermal costs of oil refining technologies at the expense of byproducts (oil sludge), as well as the need to reduce harmful emissions of technological processes. The main aim is research of the possibility of burning the carbon residue obtained during steam gasification of oil sludge as part of a fuel composition with the addition of peat. Objects of the research are carbon residue of oil sludge obtained after steam gasification of oil sludge at 600 °C, and a fuel composition based on it with the addition of peat (25 wt. %). Methods. Thermotechnical characteristics of the studied samples are determined according to SS R 55661-2013, 33503-2015 and 55660-2013. Net calorific values of the peats were determined in the ABK-1 calorimeter (Russia), the elemental composition of the organic matter was determined using the analyzer Vario Micro Cube (Elementar, Germany). Particle size (СROS) was determined using a scanning electron microscope JSM-6000C (JEOL, Japan). The study of the combustion of the samples under consideration was carried out using the differential thermal analyzer STA 449 F3 Jupiter (Netzsch, Germany) and an experimental stand equipped with a high-speed video camera FASTCAM CA4 5 (Photron, USA). The characteristic melting temperatures of ash and its composition are determined according to the SS 2057-94 and the SS 10538-87, respectively. Results. The carbon residue has a calorific value exceeding peat and comparable to brown coals and a rather low ignition temperature (220 °C), which is due to a rather high content of volatile substances (Vdaf =64,3 %). However, high values of ash content (Ad=60 %) and sulfur content (Sdaf=4,3 %) indicate the need to dispose of a large amount of ash and capture sulfur oxides SOx. It is shown that the joint combustion of carbonaceous residue and peat (25 wt. %) allowed reducing the amount of ash residue formed. In addition, when adding 25 wt. % of sukhovskoу peat it was possible to reduce the amount of generated SO2 emissions by more than 3 times. This effect is due to the gas phase interaction with peat mineral part, namely, with calcium and magnesium carbonates

    Carbon residual from the thermal processing of oil sludge as the basis for a fuel composition

    No full text
    Актуальность исследования обуславливается интересом к обеспечению тепловых затрат технологий переработки нефти за счет побочных продуктов (нефтешлама), а также необходимостью снижения вредных выбросов технологических процессов. Цель: исследование возможности сжигания углеродного остатка, полученного при паровой газификации нефтешлама, в составе топливной композиции с добавлением торфа. Объект: углеродистый остаток нефтешлама, полученный после паровой газификации нефтяного шлама при температуре 600 °С, и топливная композиция на его основе с добавлением торфа (25 мас. %). Методы. Теплотехнические характеристики исследуемых образцов определены согласно ГОСТ Р 55661-2013, 33503-2015 и 55660-2013. Значения теплоты сгорания установлены при помощи калориметра АБК-1 (РЭТ, Россия), элементный состав - на анализаторе Vario Micro Cube (Elementar, Германия). Размер частиц УОН установлен при помощи растрового электронного микроскопа JSM-6000C (JEOL, Япония). Исследование процесса горения рассматриваемых образцов осуществлено с помощью дифференциального-термического анализатора STA 449 F3 Jupiter (Netzsch, Germany) и экспериментального стенда, оборудованного высокоскоростной видеокамерой FASTCAM СА4 5 (Photron, США). Характерные температуры плавкости золы и её состав определены согласно ГОСТ 2057-94 и ГОСТ 10538-87 соответственно. Результаты. Углеродистый остаток нефтешлама имеет превышающую торф и сопоставимую с бурыми углями теплоту сгорания и довольно низкую температуру воспламенения (220 °C), что обусловлено довольно высоким содержанием летучих веществ (Vdaf =64,3 %). Однако высокие значения зольности (Ad=60 %) и содержания серы (Sdaf=4,3 %) указывают на необходимость утилизации большого количества золы и улавливания окислов серы SOx. Показано, что совместное сжигание углеродистого остатка и торфа (25 мас. %) позволило снизить количество образующегося зольного остатка. Помимо этого, при добавлении 25 мас. % суховского торфа удалось снизить количество образующихся выбросов SO2 более чем в 3 раза. Этот эффект обусловлен взаимодействием газовой фазы с минеральной частью торфа, а именно, с карбонатами кальция и магния.The relevance of the research is caused by the interest in ensuring the thermal costs of oil refining technologies at the expense of byproducts (oil sludge), as well as the need to reduce harmful emissions of technological processes. The main aim is research of the possibility of burning the carbon residue obtained during steam gasification of oil sludge as part of a fuel composition with the addition of peat. Objects of the research are carbon residue of oil sludge obtained after steam gasification of oil sludge at 600 °C, and a fuel composition based on it with the addition of peat (25 wt. %). Methods. Thermotechnical characteristics of the studied samples are determined according to SS R 55661-2013, 33503-2015 and 55660-2013. Net calorific values of the peats were determined in the ABK-1 calorimeter (Russia), the elemental composition of the organic matter was determined using the analyzer Vario Micro Cube (Elementar, Germany). Particle size (СROS) was determined using a scanning electron microscope JSM-6000C (JEOL, Japan). The study of the combustion of the samples under consideration was carried out using the differential thermal analyzer STA 449 F3 Jupiter (Netzsch, Germany) and an experimental stand equipped with a high-speed video camera FASTCAM CA4 5 (Photron, USA). The characteristic melting temperatures of ash and its composition are determined according to the SS 2057-94 and the SS 10538-87, respectively. Results. The carbon residue has a calorific value exceeding peat and comparable to brown coals and a rather low ignition temperature (220 °C), which is due to a rather high content of volatile substances (Vdaf =64,3 %). However, high values of ash content (Ad=60 %) and sulfur content (Sdaf=4,3 %) indicate the need to dispose of a large amount of ash and capture sulfur oxides SOx. It is shown that the joint combustion of carbonaceous residue and peat (25 wt. %) allowed reducing the amount of ash residue formed. In addition, when adding 25 wt. % of sukhovskoу peat it was possible to reduce the amount of generated SO2 emissions by more than 3 times. This effect is due to the gas phase interaction with peat mineral part, namely, with calcium and magnesium carbonates
    corecore