45 research outputs found
Optical and Tribological Properties of PVD/CVD Diamond-like Carbon Films
The optical and tribological properties of diamond-like carbon (DLC) films deposited by the combination of magnetron sputtering of graphite and plasmochemical dissociation of methane were studied. It was established that at methane concentration in the gas mixture Ar/CH4 at about 5β10 % the formation of DLC films with refraction index n 2.0, microhardness larger than 1000 HK and friction coefficient of 0.06β0.08 becomes possible
Optical and Tribological Properties of PVD/CVD Diamond-like Carbon Films
The optical and tribological properties of diamond-like carbon (DLC) films deposited by the combination of magnetron sputtering of graphite and plasmochemical dissociation of methane were studied. It was established that at methane concentration in the gas mixture Ar/CH4 at about 5β10 % the formation of DLC films with refraction index n 2.0, microhardness larger than 1000 HK and friction coefficient of 0.06β0.08 becomes possible
Influence of the annealing temperature on the ferroelectric properties of niobium-doped strontiumβbismuth tantalate
Characteristics of ferroelectric thin films of nio-bium-doped strontiumβbismuth tantalite (SBTN), which were deposited by magnetron sputtering on Pt/TiO2/SiO2/Si substrates, are investigated. To form the ferroelectric structure, deposited films were subjected to subsequent annealing at 700β800Β°C in an O2 atmosphere. The results of X-ray diffraction showed that the films immediately after the deposition have
an amorphous structure. Annealing at 700β800Β°C results in the formation of the Aurivillius struc-ture. The dependences of permittivity, residual polariza-tion, and the coercitivity of SBTN films on the modes of subsequent annealing are established. Films with residual polarization 2Pr = 9.2 ΞΌC/cm2, coercitivity 2Ec = 157 kV/cm, and leakage current 10β6 A/cm2 are obtained at the annealing temperature of 800Β°C. The dielectric constant and loss tangent at fre-quency of 1.0 MHz were Ξ΅ = 152 and tanΞ΄ = 0.06. The ferroelectric characteristics allow us to use the SBTN films in the capacitor cell of high density ferroelectric random-access non-volatile memory (FeRAM)
Effect of Li+ doping on photoelectric properties of double perovskite Cs2SnI6: first principles calculation and experimental investigation
Double perovskite Cs2SnI6 and its doping products (with SnI2, SnF2 or organic lithium salts added) have been utilized as p-type hole transport materials for perovskite and dye-sensitized solar cells in many pieces of research, where the mechanism for producing p-type Cs2SnI6 is rarely reported. In this paper, the mechanism of forming p-type Li+ doped Cs2SnI6 was revealed by first-principles simulation. The simulation results show that Li+ entered the Cs2SnI6 lattice by interstitial doping to form strong interaction between Li+ and Iβ, resulting in the splitting of the Ξ± spin-orbital of Iβp at the top of the valence band, with the intermediate energy levels created and the absorption edge redshifted. The experimental results confirmed that Li+ doping neither changed the crystal phase of Cs2SnI6, nor introduced impurities. The Hall effect test results of Li+ doped Cs2SnI6 thin film samples showed that Li+ doping transformed Cs2SnI6 into a p-type semiconductor, and substantially promoted its carrier mobility (356.6 cm2/Vs), making it an ideal hole transport material
Shape tailored Cu2ZnSnS4 nanosheet aggregates for high efficiency solar desalination
In this paper, the shape tailored high-purity kesterite phase Cu2ZnSnS4 (CZTS) nanosheet aggregates (NSAs) were prepared in a low cost one-pot solvothermal method, and further fabricated into a salt-blocking membrane for solar desalination. The designed CZTS NSAs membrane-based solar steam generation device featured high solar absorptivity, low thermal energy loss and long-term stability, achieving a remarkable water evaporation rate of 1.54 kg/m2h and solar steam conversion efficiency of 78.85%. It is noteworthy that the quality of artificial seawater desalinated by evaporation was better than that of distilled water, and organic dyes, in particular, could be degraded by nearly 100%. It indicates that the CZTS NSAs membrane is likely to be one of the greatest potential substitutes for seawater desalination as well as repurification of urban reclaimed water and chemical wastewater
Electron beam nitriding of titanium in medium vacuum
We describe a novel method for electron-beam nitriding of metal (titanium) under medium (fore-vacuum)
pressures (2β8 Pa) of nitrogen. Titanium sample was heated by a dc electron beam generated by a fore-vacuum
plasma-cathode electron source with current up to 100 mA and energy up to 8 kV; this beam also generated
beam-produced plasma with active nitrogen atoms, ions and other reactive species near the sample. SEM chemical composition analysis of the nitride layer have shown the presence of approximately 25 wt% of N, wt. 68%
of Ti and only wt. 6% of O atoms within the processed layer. The X-ray diffraction spectrum of the nitride sample
showed that the modified layer has a crystalline structure predominantly orientated along the crystallographic
directions (111), (200), (220), characteristic of Ξ΄-TiN with a face-centered lattice. Besides the Ξ΄-TiN phase, there
are present in the nitrided layer a Ξ³ phase of Ti2N (tetragonal nitride) with predominant orientation (200). These
results show the advantage of using forevacuum sources for electron beam and plasma nitriding of metals
ΠΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° Π²Π°Π½Π°Π΄ΠΈΡ, Π½Π°Π½Π΅ΡΠ΅Π½Π½ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΡ
The aim of this work was to study the effect of the gas composition during sputtering on the electrophysical properties of vanadium oxide films deposited by pulsed reactive magnetron sputtering of a vanadium target in an Ar/O2 medium of working gases.The dependences of the magnetron discharge voltage, deposition rate, resistivity, temperature coefficient of resistance (TCR), and the band gap of vanadium oxide films on the oxygen concentration in the gas mixture are obtained. It was found that amorphous films of vanadium oxide are formed during reactive magnetron sputtering. It is shown that the properties of the deposited vanadium oxide films have a strong dependence on the oxygen concentration in the Ar/O2 gas mixture, which is associated with the formation of a mixture of various intermediate vanadium oxides in the film. It was found that from the point of view of using vanadium oxide films as thermosensitive layers of microbolometers, the films must be deposited at oxygen concentrations in the gas mixture of 17 to 25 %. At the given oxygen concentrations without heating the substrates, vanadium oxide films with a resistivity (0.6β4.0)Β·10-2 OhmΒ·m, TCR 2.2β2.3%/Β°C and a band gap for direct transitions of 3.7β3.78 eV. The obtained characteristics make it possible to use these films as thermosensitive layers of microbolometers.Π¦Π΅Π»ΡΡ ΡΠ°Π±ΠΎΡΡ ΡΠ²Π»ΡΠ»ΠΎΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠΎΡΡΠ°Π²Π° Π³Π°Π·ΠΎΠ²ΠΎΠΉ ΡΡΠ΅Π΄Ρ Π² ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΡ Π½Π° ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° Π²Π°Π½Π°Π΄ΠΈΡ, Π½Π°Π½Π΅ΡΠ΅Π½Π½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΡ Π²Π°Π½Π°Π΄ΠΈΠ΅Π²ΠΎaΠΉ ΠΌΠΈΡΠ΅Π½ΠΈ Π² ΡΡΠ΅Π΄Π΅ Ar/O2 ΡΠ°Π±ΠΎΡΠΈΡ
Π³Π°Π·ΠΎΠ².ΠΠΎΠ»ΡΡΠ΅Π½Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΡΠ΄Π° ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½Π°, ΡΠΊΠΎΡΠΎΡΡΠΈ Π½Π°Π½Π΅ΡΠ΅Π½ΠΈΡ, ΡΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ, ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ (Π’ΠΠ‘), ΡΠΈΡΠΈΠ½Ρ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΉ Π·Π°ΠΏΡΠ΅ΡΠ΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° Π²Π°Π½Π°Π΄ΠΈΡ ΠΎΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π² ΡΠΌΠ΅ΡΠΈ Π³Π°Π·ΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠΌ ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½ΠΎΠΌ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΠΈ ΡΠΎΡΠΌΠΈΡΡΡΡΡΡ Π°ΠΌΠΎΡΡΠ½ΡΠ΅ ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΎΠΊΡΠΈΠ΄Π° Π²Π°Π½Π°Π΄ΠΈΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π½Π°Π½Π΅ΡΠ΅Π½Π½ΡΡ
ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° Π²Π°Π½Π°Π΄ΠΈΡ ΠΈΠΌΠ΅ΡΡ ΡΠΈΠ»ΡΠ½ΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΎΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π² Ar/O2 ΡΠΌΠ΅ΡΠΈ Π³Π°Π·ΠΎΠ², ΡΡΠΎ ΡΠ²ΡΠ·Π°Π½ΠΎ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΏΠ»Π΅Π½ΠΊΠ΅ ΡΠΌΠ΅ΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΡ
ΠΎΠΊΡΠΈΠ΄ΠΎΠ² Π²Π°Π½Π°Π΄ΠΈΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° Π²Π°Π½Π°Π΄ΠΈΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅ΡΠΌΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΠΏΠ»Π΅Π½ΠΊΠΈ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π½Π°Π½ΠΎΡΠΈΡΡ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π² ΡΠΌΠ΅ΡΠΈ Π³Π°Π·ΠΎΠ² ΠΎΡ 17 Π΄ΠΎ 25 %. ΠΡΠΈ Π΄Π°Π½Π½ΡΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π±Π΅Π· Π½Π°Π³ΡΠ΅Π²Π° ΠΏΠΎΠ΄Π»ΠΎΠΆΠ΅ΠΊ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΏΠ»Π΅Π½ΠΊΠΈ ΠΎΠΊΡΠΈΠ΄Π° Π²Π°Π½Π°Π΄ΠΈΡ Ρ ΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΠ΅ΠΌ (0,6β4,0)Β·10-2 ΠΠΌΒ·ΠΌ, Π’ΠΠ‘ 2,2β2,3 %/Β°C ΠΈ ΡΠΈΡΠΈΠ½ΠΎΠΉ Π·Π°ΠΏΡΠ΅ΡΠ΅Π½Π½ΠΎΠΉ Π·ΠΎΠ½Ρ Π΄Π»Ρ ΠΏΡΡΠΌΡΡ
ΠΏΠ΅ΡΠ΅Ρ
ΠΎΠ΄ΠΎΠ² 3,7β3,78 ΡΠ. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠ»Π΅Π½ΠΊΠΈ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅ΡΠΌΠΎΡΡΠ²ΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ»ΠΎΠ΅Π² ΠΌΠΈΠΊΡΠΎΠ±ΠΎΠ»ΠΎΠΌΠ΅ΡΡΠΎΠ²
ΠΠΎΠ΄Π΅Π»Ρ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΡ Π΄Π²ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π½ΠΎΠΉ ΠΌΠΈΡΠ΅Π½ΠΈ
The article proposes a model for predicting the content of metal components of complex oxide films deposited by reactive magnetron sputtering of a two-component composite target in Ar/O2 gas mixture. The model takes into account the sputtering yield and ion-electron emission coefficients of the sputtered metals and their oxides, the distribution of the ion current density on the target, and the rate of the chemical reaction of the formation of oxides of these metals. To verify the proposed model, studies of the elemental composition of titanium-aluminum oxide films deposited by magnetron sputtering of a Ti-Al composite target in Ar and Ar/O2 gas mixture were carried out. It has been established that the model adequately describes the change in the content of metals in the deposited films with a change in the oxygen flow into the chamber. The simulation error does not exceed 10 %, this makes it possible to use the proposed model for predicting the content of metals in a film during reactive sputtering of two-component composite targets.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΠΏΠ»Π΅Π½ΠΎΠΊ ΡΠ»ΠΎΠΆΠ½ΡΡ
ΠΎΠΊΡΠΈΠ΄ΠΎΠ², Π½Π°Π½ΠΎΡΠΈΠΌΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΡ Π΄Π²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΠΎΠΉ ΡΠΎΡΡΠ°Π²Π½ΠΎΠΉ ΠΌΠΈΡΠ΅Π½ΠΈ Π² ΡΡΠ΅Π΄Π΅ Ar/O2 ΡΠ°Π±ΠΎΡΠΈΡ
Π³Π°Π·ΠΎΠ². Π ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡΠΈΡΡΠ²Π°Π»ΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΡ ΠΈ ΠΈΠΎΠ½Π½ΠΎ-ΡΠ»Π΅ΠΊΡΡΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠΈΡΡΠΈΠΈ ΡΠ°ΡΠΏΡΠ»ΡΠ΅ΠΌΡΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² ΠΈ ΠΈΡ
ΠΎΠΊΡΠΈΠ΄ΠΎΠ², ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΎΠΊΠ° Π½Π° ΠΌΠΈΡΠ΅Π½ΠΈ ΠΈ ΡΠΊΠΎΡΠΎΡΡΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΊΡΠΈΠ΄ΠΎΠ² ΡΡΠΈΡ
ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ². ΠΠ»Ρ Π²Π΅ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΏΠ»Π΅Π½ΠΎΠΊ ΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠ°Π½Π°-Π°Π»ΡΠΌΠΈΠ½ΠΈΡ, Π½Π°Π½Π΅ΡΠ΅Π½Π½ΡΡ
ΠΌΠ°Π³Π½Π΅ΡΡΠΎΠ½Π½ΡΠΌ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΠ΅ΠΌ Ti-Al ΡΠΎΡΡΠ°Π²Π½ΠΎΠΉ ΠΌΠΈΡΠ΅Π½ΠΈ Π² ΡΡΠ΅Π΄Π΅ Ar ΠΈ Ar/O2 ΡΠ°Π±ΠΎΡΠΈΡ
Π³Π°Π·ΠΎΠ². Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΌΠΎΠ΄Π΅Π»Ρ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π² Π½Π°Π½Π΅ΡΠ΅Π½Π½ΡΡ
ΠΏΠ»Π΅Π½ΠΊΠ°Ρ
ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΠΏΠΎΡΠΎΠΊΠ° ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π² ΠΊΠ°ΠΌΠ΅ΡΡ. ΠΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ β Π½Π΅ Π±ΠΎΠ»Π΅Π΅ 10 %, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ² Π² ΠΏΠ»Π΅Π½ΠΊΠ΅ ΠΏΡΠΈ ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠΌ ΡΠ°ΡΠΏΡΠ»Π΅Π½ΠΈΠΈ Π΄Π²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²Π½ΡΡ
ΠΌΠΈΡΠ΅Π½Π΅ΠΉ
Π€ΠΠ ΠΠΠ ΠΠΠΠΠΠ ΠΠΠͺΠΠΠΠ«Π₯ ΠΠ«ΠΠΠΠΠ ΠΠΠΠ£ΠΠ ΠΠΠΠΠΠΠΠΠΠ«Π₯ ΠΠ ΠΠΠΠ ΠΠ ΠΠΠ’ΠΠΠΠ ΠΠΠΠΠ’Π ΠΠ₯ΠΠΠΠ§ΠΠ‘ΠΠΠΠ ΠΠ‘ΠΠΠΠΠΠΠ―
Using nonstationary regimes electrolysis for electrodepositing silver solder bump semiconductor blocked has reduced lateral expansion of different height on the plate, to improve the qualitative characteristics of the product, increase the number of devices produced on a semiconductor wafer, and thereby improve process performance and achieve economies of precious metals.ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ Π²Π»ΠΈΡΠ½ΠΈΠ΅ ΡΠΎΡΡΠ°Π²Π° ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΡΠ° ΠΈ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠΈΡΡΠ΅ΠΌΡΡ
ΠΈΠΌΠΏΡΠ»ΡΡΠ½ΠΎ-ΡΠ΅Π²Π΅ΡΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² Π½Π° ΡΠΊΠΎΡΠΎΡΡΡ ΠΈ ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΠ±ΡΠ΅ΠΌΠ½ΡΡ
ΡΠ΅ΡΠ΅Π±ΡΡΠ½ΡΡ
Π²ΡΠ²ΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΡΡ
ΠΏΡΠΈΠ±ΠΎΡΠΎΠ². ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΠ·Π° ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ½ΠΈΠ·ΠΈΡΡ ΠΈΡ
Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ ΡΠ°Π·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΈ ΡΠ°Π·Π½ΠΎΠ²ΡΡΠΎΡΠ½ΠΎΡΡΡ ΠΏΠΎ ΠΏΠ»Π°ΡΡΠΈΠ½Π΅, ΡΠ»ΡΡΡΠΈΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ, ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΡΠΈΠ±ΠΎΡΠΎΠ², ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΡ
Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠΎΠ»ΡΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΠ½Π΅, ΠΈ, ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ, ΠΏΠΎΠ²ΡΡΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΡΡ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡ Π΄ΡΠ°Π³ΠΌΠ΅ΡΠ°Π»Π»ΠΎΠ²
ΠΠ½ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½Π°Ρ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠ°: ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅, ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡ, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°
Two-layer Al/Nb (1000/200 nm) was deposited by sputtering using a DC magnetron method on Si wafers. The anodizing was in 0.2 M oxalic solution at 53 V, re-anodized in the 0.5 M boric acid in potentiodynamic mode at increase of potential until 400 V. For forming anodic composite nanostructure, the porous anodic aluminum oxide was partially removed in 50 % aqueous solution of phosphoric acid at 50Β°C for 1200 s. The morphology, photoluminescence, and optical reflection of an anodic composite nanostructure were investigated. The anodic composite nanostructure showed effective optical reflection in the wavelength range from 540 to 1000 nm, and the maximum reflective efficiency was observed at a wavelength of 850 nm, 52 % reflectance occurs. The photoluminescence maximum was observed at a wavelength of 453 nm.ΠΠ²ΡΡ
ΡΠ»ΠΎΠΉΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° Al/Nb (1000/200 Π½ΠΌ) Π½Π° ΠΊΡΠ΅ΠΌΠ½ΠΈΠ΅Π²ΠΎΠΉ ΠΏΠΎΠ΄Π»ΠΎΠΆΠΊΠ΅ Π±ΡΠ»Π° ΠΏΡΠΎΠ°Π½ΠΎΠ΄ΠΈΡΠΎΠ²Π°Π½Π° Π² 0,2 Π Π²ΠΎΠ΄Π½ΠΎΠΌ ΡΠ°ΡΡΠ²ΠΎΡΠ΅ ΡΠ°Π²Π΅Π»Π΅Π²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΏΡΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠΈ 53 Π. ΠΠΎΡΠ»Π΅ Π·Π°Π²Π΅ΡΡΠ΅Π½ΠΈΡ ΡΡΠ°ΠΏΠ° Π°Π½ΠΎΠ΄ΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π·Π°ΠΌΠ΅Π½Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠ»ΠΈΡΠ° Π½Π° 0,5 Π Π²ΠΎΠ΄Π½ΡΠΉ ΡΠ°ΡΡΠ²ΠΎΡ Π±ΠΎΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΈ Π·Π°ΡΠ΅ΠΌ ΡΠ΅Π°Π½ΠΎΠ΄ΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΠΎΠ΄ΡΠ»ΠΎΠΉ Π½ΠΈΠΎΠ±ΠΈΡ Π΄ΠΎ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ 400 Π. ΠΠ»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π°Π½ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΡ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ ΡΠ΄Π°Π»Π΅Π½ΠΈΠ΅ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΡΠ°ΡΡΠΈ Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΎΠΊΡΠΈΠ΄Π° Π°Π»ΡΠΌΠΈΠ½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 1200 Ρ Π² 50 % ΡΠ°ΡΡΠ²ΠΎΡΠ΅ ΠΎΡΡΠΎΡΠΎΡΡΠΎΡΠ½ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ 50 Β°Π‘. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Π° ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡ, ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΡ, ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π°Π½ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½ΠΎΠΉ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΡ. ΠΠ½ΠΎΠ΄Π½Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΎΠ½Π½Π°Ρ Π½Π°Π½ΠΎΡΡΡΡΠΊΡΡΡΠ° ΠΏΠΎΠΊΠ°Π·Π°Π»Π° ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π΄Π»ΠΈΠ½ Π²ΠΎΠ»Π½ ΠΎΡ 540 Π΄ΠΎ 1000 Π½ΠΌ, Π° ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΠΎΡΡΠ°ΠΆΠ°ΡΡΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π½Π°Π±Π»ΡΠ΄Π°Π»Π°ΡΡ Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ 850 Π½ΠΌ ΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 52 %. ΠΠΈΠΊ ΡΠΎΡΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠΈΠΈ Π½Π°Π±Π»ΡΠ΄Π°Π»ΡΡ Π½Π° Π΄Π»ΠΈΠ½Π΅ Π²ΠΎΠ»Π½Ρ 453 Π½ΠΌ.