1 research outputs found
Development and external validation of a clinical prediction model for functional impairment after intracranial tumor surgery
OBJECTIVE Decision-making for intracranial tumor surgery requires balancing the oncological benefit against the risk for resection-related impairment. Risk estimates are commonly based on subjective experience and generalized num-bers from the literature, but even experienced surgeons overestimate functional outcome after surgery. Today, there is no reliable and objective way to preoperatively predict an individual patient's risk of experiencing any functional impair-ment. METHODS The authors developed a prediction model for functional impairment at 3 to 6 months after microsurgical resection, defined as a decrease in Karnofsky Performance Status of >= 10 points. Two prospective registries in Swit- zerland and Italy were used for development. External validation was performed in 7 cohorts from Sweden, Norway, Germany, Austria, and the Netherlands. Age, sex, prior surgery, tumor histology and maximum diameter, expected major brain vessel or cranial nerve manipulation, resection in eloquent areas and the posterior fossa, and surgical approach were recorded. Discrimination and calibration metrics were evaluated. RESULTS In the development (2437 patients, 48.2% male; mean age +/- SD: 55 +/- 15 years) and external validation (2427 patients, 42.4% male; mean age +/- SD: 58 +/- 13 years) cohorts, functional impairment rates were 21.5% and 28.5%, respectively. In the development cohort, area under the curve (AUC) values of 0.72 (95% CI 0.69-0.74) were observed. In the pooled external validation cohort, the AUC was 0.72 (95% CI 0.69-0.74), confirming generalizability. Calibration plots indicated fair calibration in both cohorts. The tool has been incorporated into a web-based application available at https://neurosurgery.shinyapps.io/impairment/. CONCLUSIONS Functional impairment after intracranial tumor surgery remains extraordinarily difficult to predict, al- though machine learning can help quantify risk. This externally validated prediction tool can serve as the basis for case by-case discussions and risk-to-benefit estimation of surgical treatment in the individual patient.Scientific Assessment and Innovation in Neurosurgical Treatment Strategie