1,003 research outputs found
Superdiffusion in the Dissipative Standard Map
We consider transport properties of the chaotic (strange) attractor along
unfolded trajectories of the dissipative standard map. It is shown that the
diffusion process is normal except of the cases when a control parameter is
close to some special values that correspond to the ballistic mode dynamics.
Diffusion near the related crisises is anomalous and non-uniform in time: there
are large time intervals during which the transport is normal or ballistic, or
even superballistic. The anomalous superdiffusion seems to be caused by
stickiness of trajectories to a non-chaotic and nowhere dense invariant Cantor
set that plays a similar role as cantori in Hamiltonian chaos. We provide a
numerical example of such a sticky set. Distribution function on the sticky set
almost coincides with the distribution function (SRB measure) of the chaotic
attractor.Comment: 10 Figure
Maximal width of the separatrix chaotic layer
The main goal of the paper is to find the {\it absolute maximum} of the width
of the separatrix chaotic layer as function of the frequency of the
time-periodic perturbation of a one-dimensional Hamiltonian system possessing a
separatrix, which is one of the major unsolved problems in the theory of
separatrix chaos. For a given small amplitude of the perturbation, the width is
shown to possess sharp peaks in the range from logarithmically small to
moderate frequencies. These peaks are universal, being the consequence of the
involvement of the nonlinear resonance dynamics into the separatrix chaotic
motion. Developing further the approach introduced in the recent paper by
Soskin et al. ({\it PRE} {\bf 77}, 036221 (2008)), we derive leading-order
asymptotic expressions for the shape of the low-frequency peaks. The maxima of
the peaks, including in particular the {\it absolute maximum} of the width, are
proportional to the perturbation amplitude times either a logarithmically large
factor or a numerical, still typically large, factor, depending on the type of
system. Thus, our theory predicts that the maximal width of the chaotic layer
may be much larger than that predicted by former theories. The theory is
verified in simulations. An application to the facilitation of global chaos
onset is discussed.Comment: 18 pages, 16 figures, submitted to PR
Dynamics of the Chain of Oscillators with Long-Range Interaction: From Synchronization to Chaos
We consider a chain of nonlinear oscillators with long-range interaction of
the type 1/l^{1+alpha}, where l is a distance between oscillators and 0< alpha
<2. In the continues limit the system's dynamics is described by the
Ginzburg-Landau equation with complex coefficients. Such a system has a new
parameter alpha that is responsible for the complexity of the medium and that
strongly influences possible regimes of the dynamics. We study different
spatial-temporal patterns of the dynamics depending on alpha and show
transitions from synchronization of the motion to broad-spectrum oscillations
and to chaos.Comment: 22 pages, 10 figure
- …