28 research outputs found
Zircon Geochronology and Petrology of Plutonic Rocks in Rhode Island
Guidebook to geologic field studies in Rhode Island and adjacent areas: The 73rd annual meeting of the New England Intercollegiate Geological Conference, October 16-18, 1981: Trip C-
Antineutrinos from Earth: A reference model and its uncertainties
We predict geoneutrino fluxes in a reference model based on a detailed
description of Earth's crust and mantle and using the best available
information on the abundances of uranium, thorium, and potassium inside Earth's
layers. We estimate the uncertainties of fluxes corresponding to the
uncertainties of the element abundances. In addition to distance integrated
fluxes, we also provide the differential fluxes as a function of distance from
several sites of experimental interest. Event yields at several locations are
estimated and their dependence on the neutrino oscillation parameters is
discussed. At Kamioka we predict N(U+Th)=35 +- 6 events for 10^{32} proton yr
and 100% efficiency assuming sin^2(2theta)=0.863 and delta m^2 = 7.3 X 10^{-5}
eV^2. The maximal prediction is 55 events, obtained in a model with fully
radiogenic production of the terrestrial heat flow.Comment: 24 pages, ReVTeX4, plus 7 postscript figures; minor formal changes to
match version to be published in PR
Preliminary study of lead isotopes in the carbonate-silica veins of Trench 14, Yucca Mountain, Nevada
The sub-vertical carbonate-silica veins filling the Bow Ridge Fault, where exposed in Trench 14 on the east side of Yucca Mountain, carry a lead isotopic signature that can be explained in terms of local sources. Two isotopically distinguishable--silicate and carbonate--fractions of lead are recognized within the vein system as well as in overlying surficial calcrete deposits. The acid-insoluble silicate fraction is contributed largely from the decomposing Miocene volcanic tuff, which forms the wall rock of the fault zone and is a ubiquitous component of the overlying soil. Lead contained in the silicate fraction approaches in isotopic composition that of the Miocene volcanic rocks of Yucca Mountain, but diverges from it in some samples by being more enriched in uranogenic isotopes. The carbonate fraction of lead in both vein and calcrete samples resides dominantly in the HCl- and CH{sub 3}COOH-soluble calcite. HCl evidently also attacks and removes lead from silicate phases, but the milder CH{sub 3}COOH dissolution procedure oftentimes identifies a significantly more radiogenic lead in the calcite. Wind-blown particulate matter brought to the area from Paleozoic and Late Proterozoic limestones in surrounding mountains may be the ultimate source of the calcite. Isotopically more uniform samples suggest that locally the basaltic ash and other volcanic rock have contributed most of the lead to both fractions of the vein system. An important finding of this study is that the data does not require the more exotic mechanisms or origins that have been proposed for the veins. Instead, the remarkably similar lead isotopic properties of the veins to those of the soil calcretes support their interpretation as a surficial, pedogenic phenomenon