205 research outputs found

    Improved Immunodetection of Endogenous α-Synuclein

    Get PDF
    α-Synuclein is a key molecule in understanding the pathogenesis of neurodegenerative α-synucleinopathies such as Parkinson's disease. Despite extensive research, however, its precise function remains unclear partly because of a difficulty in immunoblotting detection of endogenous α-synuclein. This difficulty has largely restricted the progress for α-synucleinopathy research. Here, we report that α-synuclein monomers tend to easily detach from blotted membranes, resulting in no or very poor detection. To prevent this detachment, a mild fixation of blotted membranes with paraformaldehyde was applied to the immunoblotting method. Amazingly, this fixation led to clear and strong detection of endogenous α-synuclein, which has been undetectable by a conventional immunoblotting method. Specifically, we were able to detect endogenous α-synuclein in various human cell lines, including SH-SY5Y, HEK293, HL60, HeLa, K562, A375, and Daoy, and a mouse cell line B16 as well as in several mouse tissues such as the spleen and kidney. Moreover, it should be noted that we could clearly detect endogenous α-synuclein phosphorylated at Ser-129 in several human cell lines. Thus, in some tissues and cultured cells, endogenous α-synuclein becomes easily detectable by simply fixing the blotted membranes. This improved immunoblotting method will allow us to detect previously undetectable endogenous α-synuclein, thereby facilitating α-synuclein research

    Site-specific perturbations of alpha-synuclein fibril structure by the Parkinson's disease associated mutations A53T and E46K.

    Get PDF
    PMCID: PMC3591419This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Parkinson's disease (PD) is pathologically characterized by the presence of Lewy bodies (LBs) in dopaminergic neurons of the substantia nigra. These intracellular inclusions are largely composed of misfolded α-synuclein (AS), a neuronal protein that is abundant in the vertebrate brain. Point mutations in AS are associated with rare, early-onset forms of PD, although aggregation of the wild-type (WT) protein is observed in the more common sporadic forms of the disease. Here, we employed multidimensional solid-state NMR experiments to assess A53T and E46K mutant fibrils, in comparison to our recent description of WT AS fibrils. We made de novo chemical shift assignments for the mutants, and used these chemical shifts to empirically determine secondary structures. We observe significant perturbations in secondary structure throughout the fibril core for the E46K fibril, while the A53T fibril exhibits more localized perturbations near the mutation site. Overall, these results demonstrate that the secondary structure of A53T has some small differences from the WT and the secondary structure of E46K has significant differences, which may alter the overall structural arrangement of the fibrils

    The HSP70 Molecular Chaperone Is Not Beneficial in a Mouse Model of α-synucleinopathy

    Get PDF
    BACKGROUND: Aggregation and misfolded alpha-synuclein is thought to be central in the pathogenesis of Parkinson's disease (PD). Heat-shock proteins (HSPs) that are involved in refolding and degradation processes could lower the aggregate load of alpha-synuclein and thus be beneficial in alpha-synucleinopathies. METHODOLOGY/PRINCIPAL FINDINGS: We co-overexpressed human A53T point-mutated alpha-synuclein and human HSP70 in mice, both under the control of Thy1 regulatory sequences. Behavior read-outs showed no beneficial effect of HSP70 expression in mice. In contrast, motor coordination, grip strength and weight were even worse in the alpha-synucleinopathy model in the presence of HSP70 overexpression. Biochemical analyses revealed no differences in alpha-synuclein oligomers/aggregates, truncations and phosphorylation levels and alpha-synuclein localization was unchanged in immunostainings. CONCLUSION/SIGNIFICANCE: Overexpressing HSP70 in a mouse model of alpha-synucleinopathy did not lower the toxic load of alpha-synuclein species and had no beneficial effect on alpha-synuclein-related motor deficits

    Sporadic fatal insomnia in a young woman: A diagnostic challenge: Case Report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic fatal insomnia (sFI) and fatal familial insomnia (FFI) are rare human prion diseases.</p> <p>Case Presentation</p> <p>We report a case of a 33-year-old female who died of a prion disease for whom the diagnosis of sFI or FFI was not considered clinically. Following death of this patient, an interview with a close family member indicated the patient's illness included a major change in her sleep pattern, corroborating the reported autopsy diagnosis of sFI. Genetic tests identified no prion protein (PrP) gene mutation, but neuropathological examination and molecular study showed protease-resistant PrP (PrP<sup>res</sup>) in several brain regions and severe atrophy of the anterior-ventral and medial-dorsal thalamic nuclei similar to that described in FFI.</p> <p>Conclusions</p> <p>In patients with suspected prion disease, a characteristic change in sleep pattern can be an important clinical clue for identifying sFI or FFI; polysomnography (PSG), genetic analysis, and nuclear imaging may aid in diagnosis.</p

    Cerebrospinal fluid biomarkers in human genetic transmissible spongiform encephalopathies

    Get PDF
    The 14-3-3 protein test has been shown to support the clinical diagnosis of sporadic Creutzfeldt-Jakob disease (CJD) when associated with an adequate clinical context, and a high differential potential for the diagnosis of sporadic CJD has been attributed to other cerebrospinal fluid (CSF) proteins such as tau protein, S100b and neuron specific enolase (NSE). So far there has been only limited information available about biochemical markers in genetic transmissible spongiform encephalopathies (gTSE), although they represent 10–15% of human TSEs. In this study, we analyzed CSF of 174 patients with gTSEs for 14-3-3 (n = 166), tau protein (n = 78), S100b (n = 46) and NSE (n = 50). Levels of brain-derived proteins in CSF varied in different forms of gTSE. Biomarkers were found positive in the majority of gCJD (81%) and insert gTSE (69%), while they were negative in most cases of fatal familial insomnia (13%) and Gerstmann-Sträussler-Scheinker syndrome (10%). Disease duration and codon 129 genotype influence the findings in a different way than in sporadic CJD

    Identification of Allele-Specific RNAi Effectors Targeting Genetic Forms of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is a progressive neurological disorder affecting an estimated 5–10 million people worldwide. Recent evidence has implicated several genes that directly cause or increase susceptibility to PD. As well as advancing understanding of the genetic aetiology of PD these findings suggest new ways to modify the disease course, in some cases through genetic manipulation. Here we generated a ‘walk-through’ series of RNA Pol III-expressed shRNAs targeting both the α-synuclein A30P and LRRK2 G2019S PD-associated mutations. Allele-specific discrimination of the α-synuclein A30P mutation was achieved with alignments at position 10, 13 and 14 in two model systems, including a heterozygous model mimicking the disease setting, whilst 5′RACE was used to confirm stated alignments. Discrimination of the most common PD-linked LRRK2 G2019S mutation was assessed in hemizygous dual-luciferase assays and showed that alignment of the mutation opposite position 4 of the antisense species produced robust discrimination of alleles at all time points studied. Discrimination at this position was subsequently confirmed using siRNAs, where up to 10-fold discrimination was seen. The results suggest that RNAi-mediated silencing of PD-associated autosomal dominant genes could be a novel therapeutic approach for the treatment of the relevant clinical cases of PD in future

    Excess α-synuclein worsens disease in mice lacking ubiquitin carboxy-terminal hydrolase L1

    Get PDF
    Mutations in α-synuclein (αSN) and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) have been linked to familial Parkinson's disease (PD). Physical and functional interactions between these two proteins have been described. Whether they act additively in vivo to influence disease has remained controversial. αSN is a presynaptic protein and the major constituent of Lewy inclusions, histopathological hallmarks of PD. UCH-L1 regulates ubiquitin stability in the nervous system and its loss results in neurodegeneration in peripheral and central neurons. Here, we used genetics to show that UCH-L1-deficiency together with excess αSN worsen disease. Double mutant mice show earlier-onset motor deficits, a shorter lifespan and forebrain astrogliosis but the additive disease-worsening effects of UCH-L1-deficiency and excess αSN are not accompanied by microgliosis, ubiquitin pathology or changes in pathological αSN protein levels and species

    Formation of Toxic Oligomeric α-Synuclein Species in Living Cells

    Get PDF
    Background: Misfolding, oligomerization, and fibrillization of α-synuclein are thought to be central events in the onset and progression of Parkinson's disease (PD) and related disorders. Although fibrillar α-synuclein is a major component of Lewy bodies (LBs), recent data implicate prefibrillar, oligomeric intermediates as the toxic species. However, to date, oligomeric species have not been identified in living cells. Methodology/Principal Findings: Here we used bimolecular fluorescence complementation (BiFC) to directly visualize α-synuclein oligomerization in living cells, allowing us to study the initial events leading to α-synuclein oligomerization, the precursor to aggregate formation. This novel assay provides us with a tool with which to investigate how manipulations affecting α-synuclein aggregation affect the process over time. Stabilization of α-synuclein oligomers via BiFC results in increased cytotoxicity, which can be rescued by Hsp70 in a process that reduces the formation of α-synuclein oligomers. Introduction of PD-associated mutations in α-synuclein did not affect oligomer formation but the biochemical properties of the mutant α-synuclein oligomers differ from those of wild type α-synuclein. Conclusions/Significance: This novel application of the BiFC assay to the study of the molecular basis of neurodegenerative disorders enabled the direct visualization of α-synuclein oligomeric species in living cells and its modulation by Hsp70, constituting a novel important tool in the search for therapeutics for synucleinopathies

    α-Synuclein Suppression by Targeted Small Interfering RNA in the Primate Substantia Nigra

    Get PDF
    The protein α-synuclein is involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Its toxic potential appears to be enhanced by increased protein expression, providing a compelling rationale for therapeutic strategies aimed at reducing neuronal α-synuclein burden. Here, feasibility and safety of α-synuclein suppression were evaluated by treating monkeys with small interfering RNA (siRNA) directed against α-synuclein. The siRNA molecule was chemically modified to prevent degradation by exo- and endonucleases and directly infused into the left substantia nigra. Results compared levels of α-synuclein mRNA and protein in the infused (left) vs. untreated (right) hemisphere and revealed a significant 40–50% suppression of α-synuclein expression. These findings could not be attributable to non-specific effects of siRNA infusion since treatment of a separate set of animals with luciferase-targeting siRNA produced no changes in α-synuclein. Infusion with α-synuclein siRNA, while lowering α-synuclein expression, had no overt adverse consequences. In particular, it did not cause tissue inflammation and did not change (i) the number and phenotype of nigral dopaminergic neurons, and (ii) the concentrations of striatal dopamine and its metabolites. The data represent the first evidence of successful anti-α-synuclein intervention in the primate substantia nigra and support further development of RNA interference-based therapeutics

    Membrane Permeabilization by Oligomeric α-Synuclein: In Search of the Mechanism

    Get PDF
    Background: \ud The question of how the aggregation of the neuronal protein α-synuclein contributes to neuronal toxicity in Parkinson's disease has been the subject of intensive research over the past decade. Recently, attention has shifted from the amyloid fibrils to soluble oligomeric intermediates in the α-synuclein aggregation process. These oligomers are hypothesized to be cytotoxic and to permeabilize cellular membranes, possibly by forming pore-like complexes in the bilayer. Although the subject of α-synuclein oligomer-membrane interactions has attracted much attention, there is only limited evidence that supports the pore formation by α-synuclein oligomers. In addition the existing data are contradictory.\ud \ud Methodology/Principal Findings:\ud Here we have studied the mechanism of lipid bilayer disruption by a well-characterized α-synuclein oligomer species in detail using a number of in vitro bilayer systems and assays. Dye efflux from vesicles induced by oligomeric α-synuclein was found to be a fast all-or-none process. Individual vesicles swiftly lose their contents but overall vesicle morphology remains unaltered. A newly developed assay based on a dextran-coupled dye showed that non-equilibrium processes dominate the disruption of the vesicles. The membrane is highly permeable to solute influx directly after oligomer addition, after which membrane integrity is partly restored. The permeabilization of the membrane is possibly related to the intrinsic instability of the bilayer. Vesicles composed of negatively charged lipids, which are generally used for measuring α-synuclein-lipid interactions, were unstable to protein adsorption in general.\ud \ud Conclusions/Significance:\ud The dye efflux from negatively charged vesicles upon addition of α-synuclein has been hypothesized to occur through the formation of oligomeric membrane pores. However, our results show that the dye efflux characteristics are consistent with bilayer defects caused by membrane instability. These data shed new insights into potential mechanisms of toxicity of oligomeric α-synuclein species
    corecore