7 research outputs found

    Fréchet distance with speed limits

    Get PDF
    In this paper, we introduce a new generalization of the well-known Fréchet distance between two polygonal curves, and provide an efficient algorithm for computing it. The classical Fréchet distance between two polygonal curves corresponds to the maximum distance between two point objects that traverse the curves with arbitrary non-negative speeds. Here, we consider a problem instance in which the speed of traversal along each segment of the curves is restricted to be within a specified range. We provide an efficient algorithm that decides in O(n2 logn) time whether the Fréchet distance with speed limits between two polygonal curves is at most ?, where n is the number of segments in the curves, and ≈ ≤0 is an input parameter. We then use our solution to this decision problem to find the exact Fréchet distance with speed limits in O(n2 log2 n) time

    Improved algorithms for partial Curve matching

    No full text
    Back in 1995, Alt and Godau gave an efficient algorithm for deciding whether a given curve resembles some part of a larger curve under a fixed Fréchet distance, achieving a running time of O(nm log(nm)), for n and m being the number of segments in the two curves, respectively. We improve this long-standing result by presenting an algorithm that solves this decision problem in O(nm) time. Our solution is based on constructing a simple data structure which we call free-space map. Using this data structure, we obtain improved algorithms for several variants of the Fréchet distance problem, including the Fréchet distance between two closed curves, and the so-called minimum/maximum walk problems. We also improve the map matching algorithm of Alt et al. for the case when the map is a directed acyclic graph

    Improved algorithms for partial curve matching

    No full text
    We revisit the problem of deciding whether a given curve resembles some part of a larger curve under a fixed Fréchet distance, achieving a running time of O(nm), for n and m being the number of segments in the two curves. This improves the long-standing result of Alt and Godau by an O(log(nm)) factor. Our solution is based on constructing a simple data structure which we call free-space map. Using this data structure, we obtain improved algorithms for several variants of the Fréchet distance problem, including the Fréchet distance between two closed curves, and the so-called minimum/maximum walk problems. We also improve the map matching algorithm of Alt et al. for the particular case in which the map is a directed acyclic graph

    α-visibility

    No full text
    We study a new class of visibility problems based on the notion of α-visibility. Given an angle α and a collection of line segments in the plane, a segment t is said to be α-visible from a point p, if there exists an empty triangle with one vertex at p and the side opposite to p on t such that the angle at p is α. In this model of visibility, we study the classical variants of point visibility, weak and complete segment visibility, and the construction of the visibility graph. We also investigate the natural query versions of these problems, when α is either f

    Finding maximum edge bicliques in convex bipartite graphs

    No full text
    A bipartite graph G = (A,B,E) is convex on B if there exists an ordering of the vertices of B such that for any vertex v ? A, vertices adjacent to v are consecutive in B. A complete bipartite subgraph of a graph G is called a biclique of G. Motivated by an application to analyzing DNA microarray data, we study the problem of finding maximum edge bicliques in convex bipartite graphs. Given a bipartite graph G = (A,B,E) which is convex on B, we present a new algorithm that computes a maximum edge biclique of G in O(nlog3 n log log n) time and O(n) space, where n = |A|. This improves the current O(n 2) time bound available for the problem. We also show that for two special subclasses of convex bipartite graphs, namely for biconvex graphs and bipartite permutation graphs, a maximum ed

    Finding maximum edge bicliques in convex bipartite graphs

    No full text
    A bipartite graph G=(A, B, E) is convex on B if there exists an ordering of the vertices of B such that for any vertex v εA, vertices adjacent to v are consecutive in B. A complete bipartite subgraph of a graph G is called a biclique of G. In this paper, we study the problem of finding the maximum edge-cardinality biclique in convex bipartite graphs. Given a bipartite graph G=(A, B, E) which is convex on B, we present a new algorithm that computes the maximum edge-cardinality biclique of G in O(n log3 n loglogn) time and O(n) space, where n=|A|. This improves the current O(n 2) time bound available for the problem

    α-Visibility

    No full text
    We study a new class of visibility problems based on the notion of α-visibility. Given an angle α and a collection of line segments S in the plane, a segment t is said to be α-visible from a point p, if there exists an empty triangle with one vertex at p and the side opposite to p on t such that the angle at p is α. In this model of visibility, we study the classical variants of point visibility, weak and complete segment visibility, and the construction of the visibility graph. We also investigate the natural query versions of these problems, when α is either fixed or specified at query time
    corecore