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In this paper, we introduce a new generalization of the well-known Fréchet distance
between two polygonal curves, and provide an efficient algorithm for computing it. The
classical Fréchet distance between two polygonal curves corresponds to the maximum
distance between two point objects that traverse the curves with arbitrary non-negative
speeds. Here, we consider a problem instance in which the speed of traversal along each
segment of the curves is restricted to be within a specified range. We provide an efficient
algorithm that decides in O (n2 log n) time whether the Fréchet distance with speed limits
between two polygonal curves is at most ε, where n is the number of segments in the
curves, and ε � 0 is an input parameter. We then use our solution to this decision problem
to find the exact Fréchet distance with speed limits in O (n2 log2 n) time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fréchet distance [2] is a metric to measure the similarity of polygonal curves. It finds application in several problems,
such as morphing [7], handwriting recognition [13], and protein structure alignment [8]. The Fréchet distance between two
curves is often referred to as the “dog-leash distance” because it can be interpreted as the minimum-length leash required
for a person to walk a dog, if the person and the dog, each travels from its respective starting position to its ending position,
without ever letting go off the leash or backtracking. The length of the leash determines how similar the two curves are
to each other: a short leash means the curves are similar, and a long leash means that the curves are different from each
other.

Two problem instances naturally arise: decision and optimization. In the decision problem, one wants to decide whether
two polygonal curves P and Q are within ε Fréchet distance from each other, i.e., if a leash of length ε suffices. In the
optimization problem, one wants to determine the minimum such ε. In [2], Alt and Godau gave a quadratic-time algorithm
for the decision problem, where n is the total number of segments in the curves. They also solved the corresponding
optimization problem in O (n2 logn) time.

In the classical problem, the speed of motion on the two polygonal curves is unbounded. Motivated by practical impor-
tance of similarity measures, we here consider a problem variant in which motion speeds are bounded, both from below
and from above. More precisely, associated to each segment of the curves, there is a speed range that specifies the mini-
mum and the maximum speed allowed for travelling along that segment. We say that a point object traverses a curve with
permissible speed, if it traverses the polygonal curve from start to end so that the speed used on each segment falls within
its permissible range.
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The decision version of the Fréchet distance problem with speed limits is formulated as follows: Let P and Q be two
polygonal curves with minimum and maximum permissible speeds assigned to each segment of P and Q . For a given ε � 0,
is there an assignment of speeds so that two point objects can traverse P and Q with permissible speed and, throughout
the entire traversal, remain at distance at most ε from each other? The objective in the optimization problem is to find the
smallest such ε.

In this paper, we present a new algorithm that solves the decision version of the Fréchet distance problem with speed
limits in O (n2 log n) time. Our main approach is to compute a free-space diagram similar to the one used in the standard
Fréchet distance algorithm [2]. However, since the complexity of the free-space diagram in our problem is cubic – in con-
trast to the standard free-space diagram that has quadratic complexity – we use a “lazy computation” technique to avoid
computing unneeded portions of the free space, and still be able to solve the decision problem correctly. Combined with a
parametric search technique, we then use our algorithm for the decision problem to solve the optimization problem exactly
in O (n2 log2 n) time.

Different variants of the Fréchet distance have been studied in the literature, including Fréchet distance for closed
curves [2], Fréchet distance between two curves inside a simple polygon [5], Fréchet distance between two paths on a
polyhedral surface [6,10], and the so-called homotopic Fréchet distance [3]. The Fréchet distance with speed limits we con-
sider in this paper is a natural generalization of the classical Fréchet distance, and has potential applications in GIS, when
the speed of moving objects is considered in addition to the geometric structure of the trajectories.

This paper is organized as follows. The problem is formally defined in the next section. In Section 3, we describe a simple
algorithm that solves the decision problem in O (n3) time. In Section 4, we provide an improved algorithm for the decision
problem that runs in O (n2 log n) time. Section 5 describes how the optimization problem can be solved efficiently. Finally,
we summarize in Section 6 and outline directions for future work.

2. Preliminaries

A polygonal curve in Rd is a continuous function P : [0,n] → Rd with n ∈ N, such that for each i ∈ {0, . . . ,n − 1}, the
restriction of P to the interval [i, i + 1] is affine (i.e., forms a line segment). The integer n is called the length of P . More-
over, the sequence P (0), . . . , P (n) represents the set of vertices of P . For each i ∈ {1, . . . ,n}, we denote the line segment
P (i − 1)P (i) by Pi .

Fréchet distance. A monotone parametrization of [0,n] is a continuous non-decreasing function α : [0,1] → [0,n] with α(0) = 0
and α(1) = n. Given two polygonal curves P and Q of lengths n and m respectively, the Fréchet distance between P and Q
is defined as

δF (P , Q ) = inf
α,β

max
t∈[0,1] d

(
P
(
α(t)

)
, Q

(
β(t)

))
,

where d is the Euclidean distance, and α and β range over all monotone parameterizations of [0,n] and [0,m], respectively.

Fréchet distance with speed limits. Consider two point objects OP and OQ that traverse P and Q respectively from start to
the end. If we think of the parameter t in the parameterizations α and β as “time”, then P (α(t)) and Q (β(t)) specify the
positions of OP and OQ on P and Q respectively at time t . The preimages of OP and OQ can be viewed as two point
objects ŌP and ŌQ traversing [0,n] and [0,m], respectively, with their positions at time t being specified by α(t) and β(t).

In the classical definition of Fréchet distance, the parameterizations α and β are arbitrary non-decreasing functions,
meaning that ŌP and ŌQ (and therefore, OP and OQ ) can move with arbitrary speeds in the range [0,∞]. In our variant
of the Fréchet distance with speed limits, each segment S of the curves P and Q is assigned a pair of non-negative
real numbers (vmin(S), vmax(S)) that specify the minimum and the maximum permissible speed for moving along S .
The speed limits on each segment is independent of the limits of other segments. When OP moves along a segment S
with speed v , ŌP moves along the preimage of S (which is a unit segment) with speed v/‖S‖. Therefore, the speed
limit (vmin(S), vmax(S)) on a segment S , forces a speed limit on the preimage of S bounded by the following two val-
ues:

v̄min(S) = vmin(S)

‖S‖ and v̄max(S) = vmax(S)

‖S‖ .

We define a speed-constrained parametrization of P to be a continuous surjective function f : [0, T ] → [0,n] with T > 0
such that for any i ∈ {1, . . . ,n}, the slope of f at all points t ∈ [ f −1(i − 1), f −1(i)] is within [v̄min(Pi), v̄max(Pi)]. Here, we
define the slope of a function f at a point t to be limh→0+ f (t + h)/h, where h approaches 0 only from above (right). By
this definition, if f is a continuous function, then the slope of f at any point t in its domain is well defined, even if f is
not differentiable at t .

Given two polygonal curves P and Q of lengths n and m respectively with speed limits on their segments, the speed-
constrained Fréchet distance between P and Q is defined as
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Fig. 1. (a) The free-space diagram for two polygonal curves P and Q ; (b) two segments Pi and Q j and their corresponding free space. The diagram was
generated using a Java applet developed by S. Pelletier [12].

δ F̄ (P , Q ) = inf
α,β

max
t∈[0,T ] d

(
P
(
α(t)

)
, Q

(
β(t)

))
,

where α : [0, T ] → [0,n] ranges over all speed-constrained parameterizations of P and β : [0, T ] → [0,m] ranges over all
speed-constrained parameterizations of Q . Note that this new formulation of Fréchet distance is similar to the classical one,
with the only difference that the parameterizations here are restricted to have limited slopes, reflecting the speed limits on
the segments of the input polygonal curves.

Free-space diagram. Let Bn×m = [0,n] × [0,m] be an n by m rectangle in the plane. Each point (s, t) ∈ Bn×m uniquely
represents a pair of points (P (s), Q (t)) on the polygonal curves P and Q . We decompose Bn×m into n · m unit grid cells
Ci j = [i − 1, i] × [ j − 1, j] for (i, j) ∈ {1, . . . ,n} × {1, . . . ,m}, where each cell Ci j corresponds to a segment Pi on P and a
segment Q j on Q . Given a parameter ε � 0, the free space Fε is defined as

Fε = {
(s, t) ∈ Bn×m

∣∣ d
(

P (s), Q (t)
)
� ε

}
.

We call any point p ∈ Fε a feasible point. An example of the free-space diagram for two curves P and Q is illustrated in
Fig. 1(a). The free-space diagram was first used in [2] to find the standard Fréchet distance in near quadratic time.

Notations. We introduce some notation used throughout the paper. Each line segment bounding a cell in Bn×m is called an
edge of Bn×m . We denote by Li j (resp., by Bij) the left (resp., bottom) line segment bounding Ci j . For a cell Ci j , we define
the entry side of Ci j to be entry(Ci j) = Li j ∪ Bij , and its exit side to be exit(Ci j) = Bi, j+1 ∪ Li+1, j . Throughout this paper, we
process the cells in a cell-wise order, in which a cell Ci j precedes a cell Ck� if either i < k or i = k & j < � (this corresponds
to the row-wise order of the cells, from the first cell, C0,0, to the last cell, Cnm).

For an easier manipulation of the points and intervals on the boundary of the cells, we define the following orders: Given
two points p and q in the plane, we say that p is before q, and denote it by p ≺ q, if either px < qx or px = qx & p y > qy .
For an interval I of points in the plane, the left endpoint of I , denoted by left(I), is a point p such that p ≺ q for all q ∈ I ,
q 	= p. The right endpoint of I , denoted by right(I), is defined analogously. Given two intervals I1 and I2 in the plane, we
say that I1 is before I2, and denote it by I1 ≺ I2, if left(I1) ≺ left(I2) and right(I1) ≺ right(I2). Note that I1 ≺ I2 implies that
none of the intervals I1 and I2 can be properly contained in the other.

3. The decision problem

In this section, we provide an algorithm for solving the following decision problem: Given two polygonal curves P and
Q of lengths n and m respectively (n � m) with speed limits on their segments, and a parameter ε � 0, decide whether
δ F̄ (P , Q ) � ε. We use a free-space diagram approach, similar to the one used in the standard Fréchet distance problem [2].
However, the complexity of the “reachable portion” on the cell boundaries is different in our problem; namely, each cell
boundary in our problem has a complexity of O (n2), while in the original problem cell boundaries have O (1) complexity.
This calls for a more detailed construction of the free space.

Consider two point objects, OP and OQ , traversing P and Q , with their preimages, ŌP and ŌQ , traversing [0,n] and
[0,m], respectively. When OP and OQ traverse P and Q from beginning to the end, the trajectories of ŌP and ŌQ on [0,n]
and [0,m] specify a path P in Bn×m from (0,0) to (n,m). Suppose that P passes through a point (s, t) ∈ Ci j . The slope of
P at point (s, t) is equal to the ratio of the speed of ŌQ at point t to the speed of ŌP at point s. Therefore, the minimum
slope at (s, t) is obtained when ŌQ moves with its minimum speed at point t , and ŌP moves with its maximum speed



A. Maheshwari et al. / Computational Geometry 44 (2011) 110–120 113
Fig. 2. (a) Projecting a point p and an interval I onto the exit side of Ci j ; (b) computing reachable intervals on the exit side of a cell Ci j . Dark gray areas
represent infeasible (obstacles) regions. Reachable intervals are shown with bold line segments.

at point s. Similarly, the maximum slope is obtained when ŌQ moves with its maximum speed, and ŌP moves with its
minimum speed. We define

minSlopei j = v̄min(Q j)

v̄max(Pi)
and maxSlopei j = v̄max(Q j)

v̄min(Pi)
,

where v̄min(·) and v̄max(·) are the speed limits for ŌP and ŌQ as defined in Section 2. Indeed, minSlopei j and maxSlopei j
specify the minimum and the maximum “permissible” slopes for P at any point inside Ci j . A path P ⊂ Bn×m is called slope-
constrained if for any point (s, t) ∈ P ∩ Ci j , the slope of P at (s, t) is within [minSlopei j,maxSlopei j]. A point (s, t) ∈ Fε is
called reachable if there is a slope-constrained path from (0,0) to (s, t) in Fε .

Lemma 1. δ F̄ (P , Q ) � ε iff (n,m) is reachable.

The statement of the lemma is similar to the one used in [2]; however, since the setting is different, we have provided
a proof in [9].

A simple algorithm. We now describe a simple algorithm for the decision problem. As a preprocessing step, the free space,
Fε , is computed by the algorithm. Let LF

i j = Li j ∩ Fε and BF
i j = Bij ∩ Fε . Since Fε is convex within Ci j [2], each of LF

i j and

BF
i j is a line segment. The preprocessing step therefore involves computing line segments LF

i j and BF
i j for all feasible pairs

(i, j), which can be done in O (n2) time. We then compute the reachability information on the boundary of each cell. Let
LR

i j be the set of reachable points in Li j , and BR
i j be the set of reachable points in Bij . We process the cells in the cell-wise

order, from C0,0 to Cnm , and at each cell Ci j , we propagate the reachability information from the entry side of the cell to
its exit side, using the following projection function. Given a point p ∈ entry(Ci j), the projection of p onto the exit side of
Ci j is defined as

πi j(p) = {
q ∈ exit(Ci j)

∣∣ the slope of pq is within [minSlopei j,maxSlopei j]
}
.

For a point set S ⊆ entry(Ci j), we define πi j(S) = ⋃
p∈S πi j(p) (see Fig. 2(a)). To compute the set of reachable points on

the exit side of a cell Ci j , the algorithm first projects LR
i j ∪ BR

i j to the exit side of Ci j , and takes its intersection with Fε .

More precisely, the algorithm computes LR
i+1, j and BR

i, j+1 from LR
i j , BR

i j , LF
i+1, j , and BF

i, j+1, using the following formula:

BR
i, j+1 ∪ LR

i+1, j = πi j(LR
i j ∪ BR

i j ) ∩ (BF
i, j+1 ∪ LF

i+1, j) (see Fig. 2(b)). Details are provided in Algorithm 1.

Algorithm 1 Decision Algorithm

1: Compute the free space, Fε

2: Set LR
0,0 = BR

0,0 = {(0,0)}, LR
i,0 = ∅ for i ∈ {1, . . . ,n}, BR

0, j = ∅ for j ∈ {1, . . . ,m}
3: for i = 0 to n do
4: for j = 0 to m do
5: σ = LR

i j ∪ BR
i j

6: λ = πi j(σ )

7: BR
i, j+1 = λ ∩ BF

i, j+1

8: LR
i+1, j = λ ∩ LF

i+1, j
9: end for

10: end for
11: Return yes if (n,m) ∈ LR

n+1,m , no otherwise.
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Lemma 2. After the execution of Algorithm 1, a point q ∈ exit(Ci j) is reachable iff q ∈ BR
i, j+1 ∪ LR

i+1, j .

Proof. We prove by induction on the cells in the cell-wise order. (⇐) Let q ∈ BR
i, j+1 ∪ LR

i+1, j . Then by our construction,

there is a point p ∈ LR
i j ∪ BR

i j such that q ∈ πi j(p). By induction hypothesis, p is reachable, and therefore, there is a slope-
constrained path P in Fε connecting (0,0) to p. Now, P + pq is a slope-constrained path from (0,0) to q, implying that
q is reachable. (⇒) We show that any point q ∈ exit(Ci j) which is not in BR

i, j+1 ∪ LR
i+1, j is unreachable. Suppose on the

contrary that q is reachable. Then, there should exist a slope-constrained path P in Fε that connects (0,0) to q. Because
the slope of P cannot be negative, P must cross entry(Ci j) at some point p. Now, p is reachable from (0,0), because it is
on a slope-constrained path from (0,0) to p. Therefore, p ∈ LR

i j ∪ BR
i j by induction. Consider two line segments s1 and s2

that connect p to exit(Ci j) with slopes minSlopei j and maxSlopei j , respectively. Since q /∈ πi j(p), the portion of P that lies
between p and q must cross either s1 or s2. But, it implies that the slope of P at the cross point falls out of the permissible
range [minSlopei j,maxSlopei j], and thus, P cannot be slope-constrained: a contradiction. �
Corollary 3. Algorithm 1 returns yes iff δ F̄ (P , Q ) � ε.

Proof. This follows immediately from Lemmas 1 and 2. �
We now show how Algorithm 1 can be implemented efficiently. Let a reachable interval be a maximal continuous subset

of reachable points on the entry side (or the exit side) of a cell. Therefore, each of LR
i j and BR

i j can be represented as a
sequence of reachable intervals. We make two observations:

Observation 1. For each cell Ci j , the number of reachable intervals on exit(Ci j) is at most one more than the number of reachable
intervals on entry(Ci j).

Proof. Let σ = LR
i j ∪ BR

i j be the set of reachable points on entry(Ci j), and let λ = πi j(σ ) be the projection of σ onto exit(Ci j).
Since the projection on each reachable interval on the exit side is continuous, no reachable interval in σ can contribute to
more than one reachable interval in λ. Therefore, the number of intervals in λ is at most equal to the number of intervals
in σ . (Note that projected intervals can merge.) However, after splitting λ between Li+1, j and Bi, j+1, at most one of the
intervals in λ (the one containing Li+1, j ∩ Bi, j+1) may split into two, which increases the number of intervals by at most
one. �
Corollary 4. The number of reachable intervals on the entry side of each cell is O (n2).

The above upper bound of O (n2) is indeed tight as proved in Section 4.

Observation 2. Let 〈I1, I2, . . . , Ik〉 be a sequence of intervals on the entry side of a cell Ci j . If I1 ≺ I2 ≺ · · · ≺ Ik then πi j(I1) ≺
πi j(I2) ≺ · · · ≺ πi j(Ik).

Proof. For all t ∈ {1, . . . ,k}, let �t be the line segment connecting left(It) to left(πi j(It)), and rt be the line segment con-
necting right(It) to right(πi j(It)). The observation immediately follows from the fact that all segments in the set {�t}1�t�k
have slope maxSlopei j (and thus are parallel), and all segments in {rt}1�t�k have slope minSlopei j . Note that this proof
holds even if the intervals in the original sequence and/or intervals in the projected sequence overlap each other. �
Theorem 5. Algorithm 1 solves the decision problem in O (n3) time.

Proof. The correctness of the algorithm follows from Corollary 3. For the running time, we first compute the time needed
for processing a cell Ci j . Let ri j be the number of reachable intervals on the entry side of Ci j . We use a simple data structure,
like a linked list, to store each LR

i j and BR
i j as a sequence of its reachable intervals (sorted in ≺ order). It is easy to observe

that lines 5–8 can be performed in O (ri j) time. In particular, line 5 can be performed by a simple concatenation of two lists
in O(1) time; and lines 7 and 8 involve an easy intersection test for each of the intervals in λ, which takes O (ri j) time. The
crucial part is line 6 at which reachable intervals are projected. Computing the projection of each interval takes constant
time. However, we need to merge intersecting intervals afterwards. By Observation 2, the merge step can be performed via
a linear scan, which takes O (ri j) time. The overall running time of the algorithm is therefore O (

∑
i, j ri j).

Since ri j = O (n2) by Corollary 4, and there are O (n2) cells, a running time of O (n4) is immediately implied. We can
obtain a tighter bound by computing

∑
i, j ri j explicitly. Define Rk = ∑

i+ j=k ri j , for 0 � k � 2n. Rk denotes the number of
reachable intervals on the entry side of all cells Ci j with i + j = k. By Observation 1, each of the k+1 cells contributing to Rk

can produce at most 1 new interval. Therefore, Rk+1 � Rk + k + 1. Starting with R0 = 1, we get Rk �
∑k

�=0(� + 1) = O (k2).
Thus,
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Fig. 3. A lower bound example for n = 8. The small gray diamonds represent obstacles in the free-space diagram. Reachable intervals are shown with bold
black line segments. The numbers shown at each row and column represent speed limits on the corresponding segment.

∑

0�i, j�n

ri j �
∑

0�k�2n

Rk =
∑

0�k�2n

O
(
k2) = O

(
n3). �

4. An improved algorithm

In the previous section, we provided an algorithm that solves the decision problem in O (n3) time. The following lemma
shows that any algorithm which is based on computing the reachability information on all cells has Ω(n3) time complexity.

Lemma 6. For any n > 0, there exist two polygonal curves P and Q of size O (n) such that in the free-space diagram corresponding to
P and Q , there are Θ(n) cells, where each cell has Θ(n2) reachable intervals on its boundary.

Proof. Let P be a polygonal curve consisting of n horizontal segments of unit length centered at the origin, and let Q be a
polygonal curve consisting of n/2 + 1 vertical segments, where each segment Q 2 to Q n/2+1 has unit length centered at the

origin, and Q 1 has length 1 − δ, for a sufficiently small δ � 1/n. Let ε = √
1/2 − δ + δ2. The free-space diagram Fε for the

two curves has a shape like Fig. 3 (the gray diamond-shape regions show obstacles in the free space each having a width of
2δ in x direction). We assign the following speed limits to the segments of P and Q . All segments of P have speed limits
[1,1], Q 1 has speed limits [2/n,∞], Q 2 to Q n/2 have limits [n/2,n/2], and Q n/2+1 has limits [1/n,1/n]. The number of
reachable intervals on each horizontal line y = i is increased by n/2 at each row i, for i from 1 to n/2, yielding a total
number of Θ(n2) reachable intervals on the line y = n/2. Since all these reachable intervals are projected to the right side
in the last row, each cell Ci,n/2+1 for i ∈ {n/2 + 1, . . . ,n} has Θ(n2) reachable intervals on its entry side. �

While the complexity of the free space is cubic by the previous lemma, we show in this section that it is possible
to eliminate some of the unneeded computations, and obtain an improved algorithm that solves the decision problem in
O (n2 log n) time. The key idea behind our faster algorithm is to use a “lazy computation” technique: we delay the compu-
tation of reachable intervals until they are actually required. In our new algorithm, instead of computing the projection of
all reachable intervals one by one from the entry side of each cell to its exit side, we only keep a sorted order of projected
intervals, along with some minimal information that enables us to compute the exact location of the intervals whenever
necessary.

To this end, we distinguish between two types of reachable intervals. Given a reachable interval I in exit(Ci j), we call
I an interior interval if there is a reachable interval I ′ in entry(Ci j) such that I = πi j(I ′), and we call I a boundary interval
otherwise. The main gain, as we see later in this section, is that the exact location of interior intervals can be computed
efficiently based on the location of the boundary intervals. The following iterated projection is a main tool that we will use.

Iterated projections. Let I1 be a reachable interval on the entry side of a cell Ci1 j1 , and Ik be an interval on the exit side of
a cell Cik jk . We say that Ik is an iterated projection of I1, if there is a sequence of cells Ci2 j2 , . . . ,Cik−1 jk−1 and a sequence
of intervals I2, . . . , Ik−1 such that for all 1 � t � k − 1, It ⊆ entry(Cit jt ) and It+1 = πit jt (It) (see Fig. 4). In the following, we
show that Ik can be computed efficiently from I1.

Given two points p ∈ Ci j and q ∈ Ci′ j′ , we say that q is the min projection of p, if there is a polygonal path P from p to
q passing through a sequence of cells Ci1 j1 ,Ci2 j2 , . . . ,Cik jk (k � 1), such that (i1, j1) = (i, j), (ik, jk) = (i′, j′), and P ∩ Cit jt

is a line segment whose slope is minSlopei j , for all 1 � t � k. The max projection of a point p is defined analogously.

t t
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Fig. 4. I ′ is an iterated projection of I .

Lemma 7. Using O (n) preprocessing time and space, we can build a data structure that for any point p ∈ Bn×m and any edge e of
Bn×m, determines in O (1) time if the min (or the max) projection of p onto the line containing e lies before, after, or on e; and in the
latter case, computes the exact projection of p onto e in constant time.

Proof. Suppose, w.l.o.g., that e is a vertical edge of Bn×m , corresponding to a vertex P (i) of P and a segment Q ( j − 1)Q ( j)
of Q. Then e = {i} × [ j − 1, j]. Let q be the min projection of p on the line x = i. Let p = (px, p y) and q = (qx,qy). The path
connecting p to q in the definition of the min projection has slope minSlopei j in each cell Ci j it passes through. Such a path
corresponds to the traversals of two point objects ŌP and ŌQ , where ŌP traverses [px,qx] with its maximum permissible
speed, and ŌQ traverses [p y,qy] with its minimum permissible speed. Since each of the point objects ŌP and ŌQ can
traverse O (n) segments, computing the min projection can be easily done in O (n) time. However, we can speedup the
computation using a simple table lookup technique. For ŌP , we keep two arrays T P

min and T P
max of size n, where for each

i ∈ {1, . . . ,n}, T P
min[i] (resp., T P

max[i]) represents the minimum (resp., maximum) time needed for ŌP to traverse the interval

[0, i]. Similarly, we keep two arrays T Q
min and T Q

max for ŌQ . These four tables can be easily constructed in O (n) time. To find
time t needed for ŌP to traverse [px,qx] with its maximum speed, we do the following: we first lookup a = T P

max[�px�]
and b = T P

max[qx] in O (1) time. Clearly, b − a is equal to the time needed for ŌP to traverse [�px�,qx] (note that qx is an
integer). We also compute the time t′ needed for ŌP to traverse [px, �px�] directly from the length of the interval, and
the maximum speed of ŌP in interval [�px� − 1, �px�]. Therefore, t = t′ + b − a can be computed in O (1) time total. By
similar table lookups, we compute the times t1 and t2 needed for ŌQ to traverse [p y, j − 1] and [p y, j], respectively, with
its minimum speed. If t1 � t � t2, then we conclude that qy lies in e, and we can easily compute its exact location on e
by computing the distance that ŌQ traverses in t − t1 time using its minimum speed on interval [ j − 1, j]. Otherwise, we
output that q is before or after e, depending on whether t < t1 or t > t2, all in O (1) time. �
Corollary 8. If I ′ is an iterated projection of I , then I ′ can be computed from I in O (1) time, after O (n) preprocessing time.

Proof. This is a direct corollary of Lemma 7 and the fact that if I ′ = [a′,b′] is an iterated projection of I = [a,b], then a′ is
the max projection of a, and b′ is the min projection of b. �
The data structure. The main data structure that we need in our algorithm is a dictionary for storing a sorted sequence of
intervals. A balanced binary search tree can be used for this purpose. Let T be the data structure that stores a sequence
〈I1, I2, . . . , Ik〉 of intervals in ≺ order. We need the following operations to be supported by T .

Search: Given a point x, find the leftmost interval I in T such that x � left(I).
Insert: Insert a new interval I into T , right before T .Search(left(I)), or at the end of T if I is to the right of all existing
intervals in T . In our algorithm, inserted intervals are not properly contained in any existing interval of T , and therefore,
the resulting sequence is always sorted.
Delete: Delete an existing interval I from T .
Split: Given an interval I = I j , 1 < j � k, split T into two data structures T1 and T2, containing 〈I1, . . . , I j−1〉 and
〈I j, . . . , Ik〉, respectively.
Join: Given two data structures with interval sequences I1 and I2, where each interval in I1 is before any interval in I2,
join the two structures to obtain a single structure T containing the concatenated sequence I1 · I2.

It is pretty straightforward to modify a standard balanced binary search tree to perform all the above operations in
O (log |T |) time (for example, see Chapter 4 in [14]). Note that the exact coordinates of the interior intervals are not explicitly
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Fig. 5. An example of the execution of Algorithm 2 on a cell Ci j . The intervals of S ⊆ T are shown in gray. The black intervals in T represent the interior
intervals. The intervals in U(S) ∩ Fε are boundary intervals which are inserted in lines 12–13.

stored in the data structure. Rather, we compute the coordinates on the fly whenever a comparison is made, in O (1) time
per comparison, using Corollary 10.

The algorithm. Let LT
i j (resp., BT

ij) denote the balanced search tree storing the sequence of reachable intervals on Li j (resp.,
on Bij). The reachable intervals stored in the trees are not necessarily disjoint. In particular, we allow interior intervals to
have overlaps with each other, but not with boundary intervals. Moreover, the exact locations of the interior intervals are
not explicitly stored. However, we maintain the invariant that each interior interval can be computed in O (1) time, and that
the union of the reachable intervals stored in LT

i j (resp., in BT
ij) at each time is equal to LR

i j (resp., BR
i j ).

The overall structure of the algorithm is similar to that of Algorithm 1. We process the cells in the cell-wise order, and
propagate the reachability information through each cell by projecting the reachable intervals from the entry side to the exit
side. However, to get a better performance, cells are processed in a slightly different manner, as presented in Algorithm 2.
In this algorithm, exit(Ci j) is considered as a single line segment whose points are ordered by ≺ relation. For a set S of
intervals, we define U(S) = ⋃

I∈S I . Given a data structure T as defined in the previous subsection, we use T to refer to both
the data structure and the set of intervals stored in T . Given a point set S on a line, by an interval (or a segment) of S we
mean a maximal continuous subset of points contained in S .

Algorithm 2 Improved Decision Algorithm

1: Compute the free space, Fε

2: for i ∈ {0, . . . ,n} do LT
i,0 = ∅

3: for j ∈ {0, . . . ,m} do B T
0, j = ∅

4: LT
0,0.Insert([o,o]) where o = (0,0)

5: for i = 0 to n do
6: for j = 0 to m do
7: T = Join(LT

i j , B T
i j)

8: Project T to the exit side of Ci j

9: S = {I ∈ T | I � BF
i, j+1 and I � LF

i+1, j}
10: for each I ∈ S do T .Delete(I)
11: (B T

i, j+1, LT
i+1, j) = T .Split(T .Search((i, j)))

12: for each interval I in U(S) ∩ BF
i, j+1 do B T

i, j+1.Insert(I)

13: for each interval I in U(S) ∩ LF
i+1, j do LT

i+1, j .Insert(I)
14: end for
15: end for
16: Return yes if (n,m) ∈ LT

n+1,m , no otherwise.

The algorithm works as follows. We first compute Fε in line 1. Lines 2–4 initialize the data structures for the first row
and the first column of Bn×m . Lines 5–13 process the cells in the cell-wise order. For each cell Ci j , lines 7–13 propagate the
reachability information through Ci j by creating data structures BT

i, j+1 and LT
i+1, j on the exit side of Ci j , based on BT

ij and

LT
i j , and the feasible intervals BF

i, j+1 and LF
i+1, j . In line 7, a data structure T is obtained by joining the interval sequences

in BT
ij and LT

i j . We then project T to the exit side of Ci j in line 8 by (virtually) transforming each interval I ∈ T to an
interval πi j(I) on exit(Ci j). Since the projection preserves the relative order of intervals by Observation 2, and since we do
not need to explicitly update the location of interior intervals on the exit side, the projection is simply done by copying T
to the exit side of Ci j (boundary intervals will be fixed later in lines 12–13). Furthermore, since B T

ij and LT
i j are not needed

afterwards in the algorithm, we do not actually duplicate T . Instead, we simply assign T to the exit side, without making
a new copy. In line 9, we determine a set S of intervals that are not completely contained in BF

i, j+1 or in LF
i+1, j . All such

intervals are deleted from T in line 10 (see Fig. 5 for an illustration). The remaining intervals in T have no intersection
with the corner point (i, j). Therefore, we can easily split T in line 11 into two disjoint data structures, B T and LT ,
i, j+1 i+1, j
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each corresponding to one edge of the exit side. In lines 12–13 we insert the boundary intervals into B T
i, j+1 and LT

i+1, j ,
which are computed as those portions of U(S) that lie inside Fε . Note that whenever a boundary interval I is inserted into
a data structure, its coordinates are stored along with the interval. After processing all cells, the decision problem is easily
answered in line 16 of the algorithm by checking if the target point (n,m) is reachable.

Lemma 9. After processing each cell Ci j , the following statements hold true:

(i) any interval inserted into exit(Ci j) in lines 12–13 is a boundary interval,
(ii) each interior interval on exit(Ci j) can be expressed as an iterated projection of a boundary interval.

Proof. (i) This is easy by observing that no interior interval is added to S in line 9, and therefore, U(S) cannot completely
contain any interior interval. (ii) The proof is by induction on the cells in the cell-wise order. Let I be an interior interval on
exit(Ci j). Then I is a direct projection of an interval I ′ ⊆ entry(Ci j) obtained in line 8. If I ′ is a boundary interval, then we
are done. Otherwise, I ′ is an interior interval, and therefore, it is by induction an iterated projection of another boundary
interval I ′′ . Since I = πi j(I ′) and I ′ ⊆ entry(Ci j), I is in turn an iterated projection of I ′′ . �
Corollary 10. After processing each cell Ci j , the exact location of each reachable interval on exit(Ci j) is accessible in O (1) time.

Proof. Fix a reachable interval I on exit(Ci j). If I is a boundary interval, then by Lemma 9(i), it is inserted into a data
structure by lines 12–13, and hence, its coordinates are stored in the data structure upon insertion. If I is an interior
interval, then by Lemma 9(ii), it is an iterated projection of a boundary interval, and hence, its location can be computed in
O (1) time using Corollary 8. �
Lemma 11. After processing each cell Ci j , BR

i, j+1 ∪ LR
i+1, j = U(BT

i, j+1 ∪ LT
i+1, j).

Proof. We prove by induction on the cells in the cell-wise order. Recall from Section 3 (Algorithm 1) that BR
i, j+1 ∪ LR

i+1, j =
πi j(LR

i j ∪ BR
i j ) ∩ (BF

i, j+1 ∪ LF
i+1, j). Therefore, we just need to show that U(B T

i, j+1 ∪ LT
i+1, j) = πi j(LR

i j ∪ BR
i j ) ∩ (BF

i, j+1 ∪ LF
i+1, j).

By line 7, U(T ) = U(LT
i j ∪ BT

ij). Let T1 be the set of intervals in T right after the execution of line 8, S be the set of intervals
deleted in line 10, N be the set of new intervals inserted in lines 12–13, and T2 = (T1 \ S) ∪ N . Fix a point p ∈ U(T1), and
let K be the set of intervals in T1 containing p. We distinguish between two cases:

• p ∈ Fε: There are two possibilities: (1) K � S: Here, there is an interval in K that remains in T1 after deletion of S in
line 10. Therefore, p ∈ U(T2). (2) K ⊆ S: Here, all intervals of K are removed in line 10. However, since p ∈ Fε , there is
an interval I ∈ N such that p ∈ I . Therefore, after insertion of I in lines 12–13, we have p ∈ U(T2).

• p /∈ Fε: In this case, K ⊆ S , and hence p /∈ U(T1 \ S). Moreover, no interval in N can contain p. Therefore, p /∈ U(T2).

The above two cases together show that U(T2) = U(T1) ∩ Fε . Note that, U(T1) = πi j(U(LT
i j ∪ BT

ij)) (by lines 7 and 8), and

T2 = BT
i, j+1 ∪ LT

i+1, j . Therefore, U(BT
i, j+1 ∪ LT

i+1, j) = πi j(U(LT
i j ∪ BT

ij)) ∩ (BF
i, j+1 ∪ LF

i+1, j), which completes the proof, because

LR
i j ∪ BR

i j = U(LT
i j ∪ BT

ij) by induction. �
Theorem 12. Algorithm 2 solves the decision problem in O (n2 logn) time.

Proof. The correctness of the algorithm follows from Lemma 11, combined with Lemma 2. For the running time, we com-
pute the number of operations needed to process each cell Ci j in lines 7–13. Let T denote the time needed for each data
structure operation. Line 7 needs one join operation that takes O (T ) time. Line 8 consists of a simple assignment taking
only O (1) time. To compute the subset S in line 9, we start walking from the two sides of T , and add intervals to S until
we reach the first intervals from both sides that do not belong to S . Moreover, we find the interval I = T .Search((i, j)), and
start walking around I in both directions until we find all consecutive intervals around I that lie in S (see Fig. 5). To check
if an interval lies in S or not, we need to compute the coordinates of the interval that can be done in O (1) time. Therefore,
computing S takes O (|S| + T ) time in total. Line 10 requires |S| delete operation that takes O (|S| × T ) time. Line 11 con-
sists of a split operation taking O (T ) time. The set U(S) used in lines 12–13 can be computed in O (|S|) time by a linear
scan over the set S . Since U(S) consists of at most three segments (see Fig. 5), computing U(S) ∩ Fε in lines 12–13 takes
constant time. Moreover, there are at most four insertion operations in lines 12–13 to insert boundary intervals. Therefore,
lines 12–13 takes O (|S| + T ) time. Thus, letting si j = |S|, processing each cell Ci j takes O ((si j + 1) × T ) time in total. Since
at most four new intervals are created at each cell, the total number of intervals created over all cells is O (n2). Note that
any of these O (n2) intervals can be deleted at most once, meaning that

∑
i, j si j = O (n2). Moreover, each comparison made

in the data structures takes O (1) time by Corollary 10, and hence, T = O (log n). Therefore, the total running time of the
algorithm is O (

∑
i, j(si j + 1) log n) = O (n2 log n). �
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5. Optimization problem

In this section, we describe how our decision algorithm can be used to compute the exact value of the Fréchet distance
with speed limits between two polygonal curves. We use the same parametric search technique as used in [2]. Let LF

i j =
[aij,bij] and BF

i j = [ci j,dij]. Notice that the free space, Fε , is an increasing function of ε. That is, for ε1 � ε2, we have
Fε1 ⊆ Fε2 . Therefore, to find the exact value of δ = δ F̄ (P , Q ), we can start from ε = 0, and continuously increase ε until we
reach the first point at which Fε contains a slope-constrained path from (0,0) to (n,m). It is not difficult to see that this
occurs at only one of the following “critical values”:

(A) smallest ε for which (0,0) ∈ Fε or (n,m) ∈ Fε ,
(B) smallest ε at which LF

i j or BF
i j becomes non-empty for some pair (i, j),

(C) smallest ε at which aij is the min projection of bk� , or dij is the max projection of ck� , for some i, j,k, and �.

Obviously, there are two critical values of type (A), O (n2) critical values of type (B), and O (n4) critical values of type (C),
each computable in O (1) time (see [2] and Lemma 7). Therefore, to find the exact value of δ, one can compute all these
O (n4) values, sort them, and do a binary search (equipped with our decision algorithm) to find the smallest ε for which
δ F̄ (P , Q ) � ε, in O (n4 log n) total time. However, as mentioned in [2], a parametric search method [11,4] can be applied to
the critical values of type (C) to get a faster algorithm.

The crucial observation made in [2] is that any comparison-based sorting algorithm that sorts aij,bij, ci j , and dij (defined
as functions of ε) has critical values that include those of type (C). This is because the critical values of type (C) occur if
aij = bk� + c or dij = ck� + c′ , for some i, j,k, and �, and some constants c and c′ (obtained from min and max projections).
We can thus use the following refined algorithm:

1. Compute all critical values of types (A) and (B), and sort them.
2. Binary search to find two consecutive values ε1 and ε2 in the sorted list such that δ ∈ [ε1, ε2].
3. Let S be the set of endpoints aij,bij, ci j , dij of intervals LF

i j and BF
i j that are non-empty for ε ∈ [ε1, ε2]. Use Cole’s

parametric search method [4] based on sorting the values in S to find the exact value of δ.

Steps 1 and 2 together take O (n2 log n). The parametric search in step 3 takes O ((k + T ) log k) time, where k is the
number of values to be sorted, and T is the time needed by the decision algorithm. In our case, k = |S| = O (n2), and
T = O (n2 log n). Therefore, we conclude:

Theorem 13. The exact Fréchet distance with speed limits can be computed in O (n2 log2 n) time.

6. Conclusions

In this paper, we introduced a variant of the Fréchet distance between two polygonal curves in which the speed of
traversal along each segment of the curves is restricted to be within a specified range. We presented an efficient algorithm
to solve the decision problem in O (n2 log n) time, which together with a parametric search, led to a O (n2 log2 n) time
algorithm for finding the exact value of the Fréchet distance with speed limits.

Several open problems arise from our work. In particular, it is interesting to consider speed limits in other variants of the
Fréchet distance studied in the literature, such as the Fréchet distance between two curves lying inside a simple polygon [5],
on a convex polyhedron [10], or on a polyhedral surface [6]. Our result can be also useful in matching planar maps, where
the objective is to find a curve in a road network that is as close as possible to a vehicle trajectory. In [1], the traditional
Fréchet metric is used to match a trajectory to a road network. If the road network is very congested, the Fréchet distance
with speed limits introduced here seems to find a more realistic path in the road network, close to the trajectory of the
vehicle. It is also interesting to extend our variant of the Fréchet distance to the setting where the speed limits on the
segments of the curves change as functions over time.
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