9 research outputs found

    The Great Debate at "Melanoma Bridge", Naples, December 7th, 2019.

    Get PDF
    The Great Debate session at the 2019 Melanoma Bridge congress (December 5-7, Naples, Italy) featured counterpoint views from experts on five topical issues in melanoma. These were whether to choose local intratumoral treatment or systemic treatment, whether patients with stage IIIA melanoma require adjuvant therapy or not, whether treatment is better changed at disease progression or during stable disease, whether adoptive cell transfer (ACT) therapy is more appropriate used before or in combination with checkpoint inhibition therapy, and whether treatment can be stopped while the patient is still on response. As was the case for previous meetings, the debates were assigned by meeting Chairs. As such, positions taken by each of the melanoma experts during the debates may not have reflected their respective personal approach

    CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1.

    Get PDF
    Cytotoxic T cells that are present in tumors and capable of recognizing tumor epitopes are nevertheless generally impotent in eliciting tumor rejection. Thus, identifying the immune escape mechanisms responsible for inducing tumor-specific CD8(+) T-cell dysfunction may reveal effective strategies for immune therapy. The inhibitory receptors PD-1 and Tim-3 are known to negatively regulate CD8(+) T-cell responses directed against the well-characterized tumor antigen NY-ESO-1. Here, we report that the upregulation of the inhibitory molecule BTLA also plays a critical role in restricting NY-ESO-1-specific CD8(+) T-cell expansion and function in melanoma. BTLA-expressing PD-1(+)Tim-3(-) CD8(+) T cells represented the largest subset of NY-ESO-1-specific CD8(+) T cells in patients with melanoma. These cells were partially dysfunctional, producing less IFN-γ than BTLA(-) T cells but more IFN-γ, TNF, and interleukin-2 than the highly dysfunctional subset expressing all three receptors. Expression of BTLA did not increase with higher T-cell dysfunction or upon cognate antigen stimulation, as it does with PD-1, suggesting that BTLA upregulation occurs independently of functional exhaustion driven by high antigen load. Added with PD-1 and Tim-3 blockades, BTLA blockade enhanced the expansion, proliferation, and cytokine production of NY-ESO-1-specific CD8(+) T cells. Collectively, our findings indicate that targeting BTLA along with the PD-1 and Tim-3 pathways is critical to reverse an important mechanism of immune escape in patients with advanced melanoma

    Next generation of immunotherapy for melanoma

    No full text
    Purpose: Immunotherapy has a long history with striking but limited success in patients with melanoma. To date, interleukin-2 and interferon-alfa2b are the only approved immunotherapeutic agents for melanoma in the United States. Design: Tumor evasion of host immune responses, and strategies for overcoming tumor-induced immunosuppression are reviewed. Several novel immunotherapies currently in worldwide phase III clinical testing for melanoma are discussed. Results: The limitations of immunotherapy for melanoma stem from tumor-induced mechanisms of immune evasion that render the host tolerant of tumor antigens. For example, melanoma inhibits the maturation of antigen-presenting cells, preventing full T-cell activation and downregulating the effector antitumor immune response. New immunotherapies targeting critical regulatory elements of the immune system may overcome tolerance and promote a more effective antitumor immune response. These include monoclonal antibodies that block the cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and toll-like receptor 9 (TLR9) agonists. Blockade of CTLA4 prevents inhibitory signals that downregulate T-cell activation. TLR9 agonists stimulate dendritic cell maturation and ultimately induce a more effective immune response. These approaches have been shown to stimulate acute immune activation with concomitant appearance of transient adverse events mediated by the immune system. The pattern and duration of immune responses associated with these new modalities differ from those associated with cytokines and cytotoxic agents. In addition, vaccines are being developed that may ultimately target melanoma either alone or in combination with these immunomodulatory therapies. Conclusion: The successes of cytokine and interferon therapy of melanoma, coupled with an array of new approaches, are generating new enthusiasm for the immunotherapy of melanoma. © 2008 by the American Society of Clinical Oncology

    PD-1 is a regulator of NY-ESO-1-specific CD8+ T cell expansion in melanoma patients.

    Get PDF
    The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression

    CD4 + T CELL MATTERS IN TUMOR IMMUNITY

    No full text

    Nevoid Basal Cell Carcinoma (Gorlin) Syndrome

    No full text
    corecore