109 research outputs found
Identification of Sexāspecific Molecular Markers Using Restriction Siteāassociated DNA Sequencing
A major barrier to evolutionary studies of sex determination and sex chromosomes has been a lack of information on the types of sexādetermining mechanisms that occur among different species. This is particularly problematic in groups where most species lack visually heteromorphic sex chromosomes, such as fish, amphibians and reptiles, because cytogenetic analyses will fail to identify the sex chromosomes in these species. We describe the use of restriction siteāassociated DNA (RAD) sequencing, or RADāseq, to identify sexāspecific molecular markers and subsequently determine whether a species has male or female heterogamety. To test the accuracy of this technique, we examined the lizard Anolis carolinensis. We performed RADāseq on seven male and ten female A. carolinensis and found one maleāspecific molecular marker. Anolis carolinensis has previously been shown to possess male heterogamety and the recently published A. carolinensis genome facilitated the characterization of the sexāspecific RADāseq marker. We validated the male specificity of the new marker using PCR on additional individuals and also found that it is conserved in some other Anolis species. We discuss the utility of using RADāseq to identify sexādetermining mechanisms in other species with cryptic or homomorphic sex chromosomes and the implications for the evolution of male heterogamety in Anolis
\u3cem\u3eAnolis\u3c/em\u3e Sex Chromosomes Are Derived from A Single Ancestral Pair
To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis, we compared the relative roles of sex chromosome conservation versus turnover of sexādetermining mechanisms. We used modelābased comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an Xālinked bacterial artificial chromosome (BAC) and quantitative PCR of Xālinked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with longāterm conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades
Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA
<p>Abstract</p> <p>Background:</p> <p>The DM domain is a zinc finger-like DNA binding motif first identified in the sexual regulatory proteins Doublesex (DSX) and MAB-3, and is widely conserved among metazoans. DM domain proteins regulate sexual differentiation in at least three phyla and also control other aspects of development, including vertebrate segmentation. Most DM domain proteins share little similarity outside the DM domain. DSX and MAB-3 bind partially overlapping DNA sequences, and DSX has been shown to interact with DNA via the minor groove without inducing DNA bending. DSX and MAB-3 exhibit unusually high DNA sequence specificity relative to other minor groove binding proteins. No detailed analysis of DNA binding by the seven vertebrate DM domain proteins, DMRT1-DMRT7 has been reported, and thus it is unknown whether they recognize similar or diverse DNA sequences.</p> <p>Results:</p> <p>We used a random oligonucleotide in vitro selection method to determine DNA binding sites for six of the seven proteins. These proteins selected sites resembling that of DSX despite differences in the sequence of the DM domain recognition helix, but they varied in binding efficiency and in preferences for particular nucleotides, and some behaved anomalously in gel mobility shift assays. DMRT1 protein from mouse testis extracts binds the sequence we determined, and the DMRT proteins can bind their in vitro-defined sites in transfected cells. We also find that some DMRT proteins can bind DNA as heterodimers.</p> <p>Conclusion:</p> <p>Our results suggest that target gene specificity of the DMRT proteins does not derive exclusively from major differences in DNA binding specificity. Instead target specificity may come from more subtle differences in DNA binding preference between different homodimers, together with differences in binding specificity between homodimers versus heterodimers.</p
Anolis sex chromosomes are derived from a single ancestral pair
This is the peer reviewed version of the following article: Gamble, T., Geneva, A. J., Glor, R. E., & Zarkower, D. (2014). Anolis sex chromosomes are derived from a single ancestral pair. Evolution; International Journal of Organic Evolution, 68(4), 1027ā1041. http://doi.org/10.1111/evo.12328, which has been published in final form at http://doi.org/10.1111/evo.12328. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis we compared the relative roles of sex chromosome conservation vs. turnover of sex determining mechanisms. We used model based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an X-linked BAC and qPCR of X-linked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with long-term conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades
A Mammal-Specific Doublesex Homolog Associates with Male Sex Chromatin and Is Required for Male Meiosis
Gametogenesis is a sexually dimorphic process requiring profound differences in germ cell differentiation between the sexes. In mammals, the presence of heteromorphic sex chromosomes in males creates additional sex-specific challenges, including incomplete X and Y pairing during meiotic prophase. This triggers formation of a heterochromatin domain, the XY body. The XY body disassembles after prophase, but specialized sex chromatin persists, with further modification, through meiosis. Here, we investigate the function of DMRT7, a mammal-specific protein related to the invertebrate sexual regulators Doublesex and MAB-3. We find that DMRT7 preferentially localizes to the XY body in the pachytene stage of meiotic prophase and is required for male meiosis. In Dmrt7 mutants, meiotic pairing and recombination appear normal, and a transcriptionally silenced XY body with appropriate chromatin marks is formed, but most germ cells undergo apoptosis during pachynema. A minority of mutant cells can progress to diplonema, but many of these escaping cells have abnormal sex chromatin lacking histone H3K9 di- and trimethylation and heterochromatin protein 1Ī² accumulation, modifications that normally occur between pachynema and diplonema. Based on the localization of DMRT7 to the XY body and the sex chromatin defects observed in Dmrt7 mutants, we conclude that DMRT7 plays a role in the sex chromatin transformation that occurs between pachynema and diplonema. We suggest that DMRT7 may help control the transition from meiotic sex chromosome inactivation to postmeiotic sex chromatin in males. In addition, because it is found in all branches of mammals, but not in other vertebrates, Dmrt7 may shed light on evolution of meiosis and of sex chromatin
DMRT5, DMRT3, and EMX2 Cooperatively Repress at the Pallium-Subpallium Boundary to Maintain Cortical Identity in Dorsal Telencephalic Progenitors
Specification of dorsoventral regional identity in progenitors of the developing telencephalon is a first pivotal step in the development of the cerebral cortex and basal ganglia. Previously, we demonstrated that the two zinc finger doublesex and mab-3 related (Dmrt) genes, Dmrt5 (Dmrta2) and Dmrt3, which are coexpressed in high caudomedial to low rostrolateral gradients in the cerebral cortical primordium, are separately needed for normal formation of the cortical hem, hippocampus, and caudomedial neocortex. We have now addressed the role of Dmrt3 and Dmrt5 in controlling dorsoventral division of the telencephalon in mice of either sex by comparing the phenotypes of single knock-out (KO) with double KO embryos and by misexpressing Dmrt5 in the ventral telencephalon. We find that DMRT3 and DMRT5 act as critical regulators of progenitor cell dorsoventral identity by repressing ventralizing regulators. Early ventral fate transcriptional regulators expressed in the dorsal lateral ganglionic eminence, such as Gsx2, are upregulated in the dorsal telencephalon of Dmrt3;Dmrt5 double KO embryos and downregulated when ventral telencephalic progenitors express ectopic Dmrt5. Conditional overexpression of Dmrt5 throughout the telencephalon produces gene expression and structural defects that are highly consistent with reduced GSX2 activity. Further, Emx2;Dmrt5 double KO embryos show a phenotype similar to Dmrt3;Dmrt5 double KO embryos, and both DMRT3, DMRT5 and the homeobox transcription factor EMX2 bind to a ventral telencephalon-specific enhancer in the Gsx2 locus. Together, our findings uncover cooperative functions of DMRT3, DMRT5, and EMX2 in dividing dorsal from ventral in the telencephalon.
SIGNIFICANCE STATEMENT We identified the DMRT3 and DMRT5 zinc finger transcription factors as novel regulators of dorsoventral patterning in the telencephalon. Our data indicate that they have overlapping functions and compensate for one another. The double, but not the single, knock-out produces a dorsal telencephalon that is ventralized, and olfactory bulb tissue takes over most remaining cortex. Conversely, overexpressing Dmrt5 throughout the telencephalon causes expanded expression of dorsal gene determinants and smaller olfactory bulbs. Furthermore, we show that the homeobox transcription factor EMX2 that is coexpressed with DMRT3 and DMRT5 in cortical progenitors cooperates with them to maintain dorsoventral patterning in the telencephalon. Our study suggests that DMRT3/5 function with EMX2 in positioning the pallial-subpallial boundary by antagonizing the ventral homeobox transcription factor GSX2
- ā¦