52 research outputs found

    Auto-regressive Discrete Acquisition Points Transformation for Diffusion Weighted MRI Data

    Get PDF
    OBJECTIVE: A new method for fitting diffusion-weighted magnetic resonance imaging (DW-MRI) data composed of an unknown number of multi-exponential components is presented and evaluated. METHODS: The auto-regressive discrete acquisition points transformation (ADAPT) method is an adaption of the auto-regressive moving average system, which allows for the modeling of multi-exponential data and enables the estimation of the number of exponential components without prior assumptions. ADAPT was evaluated on simulated DW-MRI data. The optimum ADAPT fit was then applied to human brain DWI data and the correlation between the ADAPT coefficients and the parameters of the commonly used bi-exponential intravoxel incoherent motion (IVIM) method were investigated. RESULTS: The ADAPT method can correctly identify the number of components and model the exponential data. The ADAPT coefficients were found to have strong correlations with the IVIM parameters. ADAPT(1,1)-β0 correlated with IVIM-D: ρ = 0.708, P &lt; 0.001. ADAPT(1,1)-α1 correlated with IVIM-f: ρ = 0.667, P &lt; 0.001. ADAPT(1,1)-β1 correlated with IVIM-D*: ρ = 0.741, P &lt; 0.001). CONCLUSION: ADAPT provides a method that can identify the number of exponential components in DWI data without prior assumptions, and determine potential complex diffusion biomarkers. SIGNIFICANCE: ADAPT has the potential to provide a generalized fitting method for discrete multi-exponential data, and determine meaningful coefficients without prior information.</p

    Microvascular ischemia in hypertrophic cardiomyopathy:new insights from high-resolution combined quantification of perfusion and late gadolinium enhancement

    Get PDF
    BACKGROUND: Microvascular ischemia is one of the hallmarks of hypertrophic cardiomyopathy (HCM) and has been associated with poor outcome. However, myocardial fibrosis, seen on cardiovascular magnetic resonance (CMR) as late gadolinium enhancement (LGE), can be responsible for rest perfusion defects in up to 30 % of patients with HCM, potentially leading to an overestimation of the ischemic burden. We investigated the effect of left ventricle (LV) scar on the total LV ischemic burden using novel high-resolution perfusion analysis techniques in conjunction with LGE quantification. METHODS: 30 patients with HCM and unobstructed epicardial coronary arteries underwent CMR with Fermi constrained quantitative perfusion analysis on segmental and high-resolution data. The latter were corrected for the presence of fibrosis on a pixel-by-pixel basis. RESULTS: High-resolution quantification proved more sensitive for the detection of microvascular ischemia in comparison to segmental analysis. Areas of LGE were associated with significant reduction of myocardial perfusion reserve (MPR) leading to an overestimation of the total ischemic burden on non-corrected perfusion maps. Using a threshold MPR of 1.5, the presence of LGE caused an overestimation of the ischemic burden of 28 %. The ischemic burden was more severe in patients with fibrosis, also after correction of the perfusion maps, in keeping with more severe disease in this subgroup. CONCLUSIONS: LGE is an important confounder in the assessment of the ischemic burden in patients with HCM. High-resolution quantitative analysis with LGE correction enables the independent evaluation of microvascular ischemia and fibrosis and should be used when evaluating patients with HCM
    corecore