4 research outputs found

    The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function

    Get PDF
    From Frontiers via Jisc Publications RouterHistory: collection 2021, received 2021-03-24, accepted 2021-06-09, epub 2021-07-01Publication status: PublishedIt is difficult to answer important questions in neuroscience, such as: “how do neural circuits generate behaviour?,” because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a “generic” model circuit, to provide insight into mammalian circuit development and function

    Neuromuscular Basis of Drosophila Larval Rolling Escape Behavior

    Get PDF
    To escape from dangerous stimuli, animals execute escape behaviors that are fundamentally different from normal locomotion. The rolling escape behavior of Drosophila larvae consists of C-shaped bending and rolling. However, the muscle contraction patterns that lead to rolling are poorly understood. We find that following the initial body bending, muscles contract in a circumferential wave around the larva as they enter the bend, maintaining unidirectional rolling that resembles a cylinder rolling on a surface. We study the structure of motor circuits for rolling, inhibit different motor neurons to determine which muscles are essential for rolling, and propose circuit and biomechanical models for roll generation. Our findings provide insights into how motor circuits produce diverse motor behaviors
    corecore