5 research outputs found

    LEA gene expression asssessment in advanced mutant rice genotypes under drought stress

    Get PDF
    Late embryogenesis abundant (LEA) proteins are primarily found in plants stem, roots, and other organs and play significant roles in tolerance to several abiotic stresses. Plants synthesize a discrete set of LEA proteins in response to drought stress. In this study, the expression patterns of LEA genes were investigated in two advanced mutant rice genotypes subjected to the drought stress condition and different physiological traits including photosynthetic rate, leaf chlorophyll content, and photosystem II (PSII) photochemical efficiency (Fv/Fm) which were analyzed to confirm their drought tolerance. Five LEA genes (OsLEA1, OsLEA2, OsLEA3, OsLEA4, and OsLEA5) were used in the evaluation of rice genotypes and were significantly upregulated by more than 4-fold for MR219-4 and MR219-9. The upregulated genes by these two varieties showed high similarity with the droughttolerant check variety, Aeron1. This indicates that these advanced mutant genotypes have better tolerance to drought stress. The changes in the expression level of LEA genes among the selected rice genotypes under drought stress were further confirmed. Hence, LEA genes could be served as a potential tool for drought tolerance determination in rice. MR219-4 and MR219-9 were found to be promising in breeding for drought tolerance as they offer better physiological adaptation to drought stress

    Growth Performance and Antioxidant Enzyme Activities of Advanced Mutant Rice Genotypes under Drought Stress Condition

    No full text
    Drought stress affects various physiological and metabolic processes in rice (Oryza sativa L.) plant. Non-availability of high-yielding varieties suitable for cultivation under drought condition lead towards a sharp decline in rice yield. Induce mutation is an essential auxiliary approach to counterpart conventional breeding to produce stress-tolerance rice variety. The current study was aimed to identify two advanced mutant rice genotypes as drought-tolerant using growth parameters and antioxidant enzyme activities. The advanced mutant rice genotypes, MR219-4 and MR219-9, showed a minimal reduction on all growth parameters, yield, and yield components measured for drought tolerance. MR219-4 had a slight reduction on total dry weight and chlorophyll content under drought stress condition. Proline content increased significantly in drought-tolerant rice genotypes and the highest proline content was obtained from MR219-4 followed by MR219-9 under drought stress. Catalase, ascorbate peroxidase, and guaiacol peroxidase activities were significantly increased in drought stress treatment in all the rice genotypes. MR219-4 and MR219-9 were identified as high-yielding drought-tolerant genotypes as they maintained good performance under drought stress condition for all the measured traits compared to the drought-tolerant check varieties, Aeron1 and MR219, thus, this might be underlying selection criteria for a drought tolerance rice breeding programme

    Drought resistance in rice from conventional to molecular breeding: a review

    No full text
    Drought is the leading threat to agricultural food production, especially in the cultivation of rice, a semi-aquatic plant. Drought tolerance is a complex quantitative trait with a complicated phenotype that affects different developmental stages in plants. The level of susceptibility or tolerance of rice to several drought conditions is coordinated by the action of different drought-responsive genes in relation with other stress components which stimulate signal transduction pathways. Interdisciplinary researchers have broken the complex mechanism of plant tolerance using various methods such as genetic engineering or marker-assisted selection to develop a new cultivar with improved drought resistance. The main objectives of this review were to highlight the current method of developing a durable drought-resistant rice variety through conventional breeding and the use of biotechnological tools and to comprehensively review the available information on drought-resistant genes, QTL analysis, gene transformation and marker-assisted selection. The response, indicators, causes, and adaptation processes to the drought stress were discussed in the review. Overall, this review provides a systemic glimpse of breeding methods from conventional to the latest innovation in molecular development of drought-tolerant rice variety. This information could serve as guidance for researchers and rice breeders

    Morpho-Physiology and Antioxidant Enzyme Activities of Transgenic Rice Plant Overexpressing ABP57 under Reproductive Stage Drought Condition

    No full text
    MR219 transgenic rice line which overexpressed an auxin-binding protein (ABP57) and its wild-type cultivar, MR219, were screened under well-watered (WW) and drought stress (DS) conditions at the early reproductive stage. This study was conducted with the standard planting distance and under a normal environment to assess the yield advantages based on the field conditions. The aim of this study was to understand the response of these rice genotypes towards DS at morpho-physiological, biochemical, and agronomical levels. It was found that the DS had affected all these levels of the genotypes studied; however, the transgenic plant showed a higher number of tillers, flag leaf area, biomass, relative water content, total chlorophyll content, and antioxidative defense mechanism than the MR219 under DS. Compared to its wild-type, the transgenic plant showed an increased leaf photosynthetic rate by 7% under WW and 11% under DS. The transgenic plant also showed higher yields than MR219 under the WW (10%) and DS (59%). The results propose that drought tolerance is significantly improved in the MR219 transgenic rice line. It may develop a new opportunity for the drought-tolerant rice breeding programme via overexpression of ABP57
    corecore