1,233 research outputs found

    Extension of the Morris-Shore transformation to multilevel ladders

    Full text link
    We describe situations in which chains of N degenerate quantum energy levels, coupled by time-dependent external fields, can be replaced by independent sets of chains of length N, N-1,...,2 and sets of uncoupled single states. The transformation is a generalization of the two-level Morris-Shore transformation [J.R. Morris and B.W. Shore, Phys. Rev. A 27, 906 (1983)]. We illustrate the procedure with examples of three-level chains

    Strong-field approximation for Coulomb explosion of H_2^+ by short intense laser pulses

    Full text link
    We present a simple quantum mechanical model to describe Coulomb explosion of H2+_2^+ by short, intense, infrared laser pulses. The model is based on the length gauge version of the molecular strong-field approximation and is valid for pulses shorter than 50 fs where the process of dissociation prior to ionization is negligible. The results are compared with recent experimental results for the proton energy spectrum [I. Ben-Itzhak et al., Phys. Rev. Lett. 95, 073002 (2005), B. D. Esry et al., Phys. Rev. Lett. 97, 013003 (2006)]. The predictions of the model reproduce the profile of the spectrum although the peak energy is slightly lower than the observations. For comparison, we also present results obtained by two different tunneling models for this process.Comment: 8 pages, 4 figure

    Classification of quantum relativistic orientable objects

    Full text link
    Started from our work "Fields on the Poincare Group and Quantum Description of Orientable Objects" (EPJC,2009), we consider here a classification of orientable relativistic quantum objects in 3+1 dimensions. In such a classification, one uses a maximal set of 10 commuting operators (generators of left and right transformations) in the space of functions on the Poincare group. In addition to usual 6 quantum numbers related to external symmetries (given by left generators), there appear additional quantum numbers related to internal symmetries (given by right generators). We believe that the proposed approach can be useful for description of elementary spinning particles considering as orientable objects. In particular, their classification in the framework of the approach under consideration reproduces the usual classification but is more comprehensive. This allows one to give a group-theoretical interpretation to some facts of the existing phenomenological classification of known spinning particles.Comment: 24 page

    Coherent Ro-vibrational Revivals in a Thermal Molecular Ensemble

    Full text link
    We report an experimental and theoretical study of the evolution of vibrational coherence in a thermal ensemble of nitrogen molecules. Rotational dephasing and rephasing of the vibrational coherence is detected by coherent anti-Stokes Raman scattering. The existence of ro-vibrational coupling and the discrete energy spectrum of the rotational bath lead to a whole new class of full and fractional ro-vibrational revivals. Following the rich ro-vibrational dynamics on a nanosecond time scale with sub-picosecond time resolution enables us to determine the second-order ro-vibrational constant gammaegamma_e and assess new possibilities of controlling decoherence.Comment: submitted at Physical Review

    Influence of molecular symmetry on strong-field ionization: Studies on ethylene, benzene, fluorobenzene, and chlorofluorobenzene

    Full text link
    Using the molecular strong-field approximation we consider the effects of molecular symmetry on the ionization of molecules by a strong, linearly polarized laser pulse. Electron angular distributions and total ionization yields are calculated as a function of the relative orientation between the molecule and the laser polarization. Our studies focus on ethylene (C2_2H4_4), benzene (C6_6H6_6), fluorobenzene (C6_6H5_5F), and ortho chlorofluorobenzene (1,2 C6_6H4_4ClF), the molecules representing four different point groups. The results are compared with experiments, when available, and with the molecular tunneling theory appropriately extended to non-linear polyatomic molecules. Our investigations show that the orientational dependence of ionization yields is primarily determined by the nodal surface structure of the molecular orbitals.Comment: 13 pages, 10 figures. Submitted to Physical Review

    Rapid preparation of giant unilamellar vesicles.

    Full text link
    corecore