26 research outputs found

    Evaluation of the hydro - Mechanical efficiency of external gear pumps

    Get PDF
    This paper proposes and describes a model for evaluating the hydro-mechanical efficiency of external gear machines. The model is built considering and evaluating the main friction losses in the machines, including the viscous friction losses at the tooth tip gap, at the bearing blocks-gears gaps, at the journal bearings, and the meshing loss. To calculate the shear stress at each gap interface, the geometry of the gap has to be known. For this reason, the actual position of the gears inside the pump casing and consequent radial pressure distribution are numerically calculated to evaluate the gap height at the tooth tips. Moreover, the variation of the tilt and reference height of the lateral gaps between the gears and the pump bushings are considered. The shear stresses within the lateral gaps are estimated, for different lateral heights and tilt values. At the journal bearings gaps, the half Sommerfeld solution has been applied. The meshing loss has been calculated according to the suggestion of the International Standards. The hydro-mechanical efficiency results are then discussed with reference to commercial pumps experimentally characterized by the authors in a previous work. The average percentage deviation from experimental data was around 2%, without considering the most critical operating conditions (high delivery pressure, low rotational speed). The limits of this approach are also explained. Finally, the role of each source of loss is discussed, considering different operating conditions and two values of fluid viscosity. Lateral gap losses and meshing loss are much more relevant in determining the hydro-mechanical efficiency variation in the pump's operating range, especially at a low delivery pressure. Moreover, while lateral gap losses increase with the rotational speed, the meshing loss shows the opposite behavior. The tooth tip gap losses are never as relevant, but they increase at high pressure. The journal bearings losses become comparable with the lateral and meshing ones at high delivery pressure values. Considering the pumps analyzed and the operating range of delivery pressure values and rotational speed values, the meshing loss made the mechanical efficiency vary in a percentage range of ±7%, with lateral losses in the range of about the ±15%, when also considering the extreme operating points (low speed, high pressure; high speed, low pressure). The weight of the lateral losses slightly reduced when we analyzed the higher temperature results, while the meshing losses slightly increased

    Modelling of hydrostatic bearings for servo-cylinders

    Get PDF
    Hydraulic servo cylinders are widely used in versatile industrial applications such as machine tools, industrial robots, autonomous manufacturing systems and special applications in laboratories. To reduce friction and allow smooth and controllable displacement of the actuator, hydrostatic journal bearings are used at the ends of the rod. The design and manufacturing of this elements is challenging since the good operation relays on the very small tolerances required to bear the load on the cylinder and to reduce leakages. In this work, a virtual design and test tool for hydrostatic journal bearing with pockets, developed in OpenModelica environment, is presented. The influence of eccentricity and manufacturing tolerances is then studied and discussed. The model proposed has the aim to explore the extreme and critical operating conditions of the servo-cylinder and to help and/or improve the design phase

    The Hydraulic Power Generation and Transmission on Agricultural Tractors: Feasible architectures to reduce dissipation and fuel consumption-Part i

    Get PDF
    This paper is aimed at investigating the benefits in terms of energy efficiency of new electro-hydraulic architectures for power distribution systems of a medium-size agricultural tractor, with a focus on the hydraulic high-pressure circuit. The work is part of a wider industrial research project called TASC (Smart and Clean Agricultural Tractors [1]). Traditional and alternative architectures have been modelled and energetically compared through simulation, using a lumped parameter approach. Experimental data previously acquired have been used to validate the models and to replicate real working conditions of the machine in the simulation environment. A typical on-field manoeuvre has been used as duty cycle, to perform an effective energetic analysis. The standard hydraulic circuit is a multi-users load sensing system that uses a single variable displacement pump to feed steering, trailer brake and auxiliary utilities in that order. The key idea of the proposed solutions is the separation of steering from the other implements, to optimize the entire energy management. In particular, the paper investigates new and flexible solutions for the auxiliary utilities, including an electro-hydraulic load sensing architecture with variable pump margin, an electronic flow matching and flow sharing architecture, and an electronic strategy for automatic pressure compensation. The simulation results show that good energy saving can be achieved with the alternative architectures, so that physical prototyping of the most promising solutions will be realized as next step of the project

    Sentinel lymph node biopsy with one-step nucleic acid assay relegates the need for preoperative ultrasound-guided biopsy staging of the axilla in patients with early stage breast cancer

    Get PDF
    Avoiding axillary node clearance in patients with early stage breast cancer and low‑burden node‑positive axillary disease is an emerging practice. Informing the decision to adopt axillary conservation is examined by comparing routine preoperative axillary staging using ultrasound (AUS) ± AUS biopsy (AUSB) with intraoperative staging using sentinel lymph node biopsy (SLNB) and a one‑step nucleic acid cytokeratin‑19 amplification assay (OSNA). A single‑centre, retrospective cohort study of 1,315 consecutive new diagnoses of breast cancer in 1,306 patients was undertaken in the present study. An AUS ± AUSB was performed on all patients as part of their initial assessment. Patients who had a normal ultrasound (AUS‑) or negative biopsy (AUSB‑) followed by SLNB with OSNA ± axillary lymph node dissection (ALND), and those with a positive AUSB (AUSB+), were assessed. Tests for association were determined using a χ2 and Fisher's Exact test. A total of 266 (20.4%) patients with cT1‑3 cN0 staging received 271 AUSBs. Of these, 205 biopsies were positive and 66 were negative. The 684 patients with an AUS‑/AUSB‑assessment proceeded to SLNB with OSNA. AUS sensitivity and negative predictive value (NPV) were 0.53 [0.44‑0.62; 95% confidence interval (CI)] and 0.58 (0.53‑0.64, 95% CI), respectively. Using a total tumour load cut‑off of 15,000 copies/µl to predict ≥2 macro‑metastases, the sensitivity and NPV for OSNA were 0.82 (0.71‑0.92, 95% CI) and 0.98 (0.97‑0.99, 95% CI) (OSNA vs. AUS P<0.0001). Of the AUSB+ patients, 51% had ≤2 positive nodes following ALND and were potentially over‑treated. Where available, SLNB with OSNA should replace AUSB for axillary assessment in cT1‑2 cN0 patients with ≤2 indeterminate nodes seen on AUS

    The PROVENT-C19 registry: A study protocol for international multicenter SIAARTI registry on the use of prone positioning in mechanically ventilated patients with COVID-19 ARDS

    Get PDF
    Background The worldwide use of prone position (PP) for invasively ventilated patients with COVID-19 is progressively increasing from the first pandemic wave in everyday clinical practice. Among the suggested treatments for the management of ARDS patients, PP was recommended in the Surviving Sepsis Campaign COVID-19 guidelines as an adjuvant therapy for improving ventilation. In patients with severe classical ARDS, some authors reported that early application of prolonged PP sessions significantly decreases 28-day and 90-day mortality. Methods and analysis Since January 2021, the COVID19 Veneto ICU Network research group has developed and implemented nationally and internationally the "PROVENT-C19 Registry", endorsed by the Italian Society of Anesthesia Analgesia Resuscitation and Intensive Care. . .'(SIAARTI). The PROVENT-C19 Registry wishes to describe 1. The real clinical practice on the use of PP in COVID-19 patients during the pandemic at a National and International level; and 2. Potential baseline and clinical characteristics that identify subpopulations of invasively ventilated patients with COVID-19 that may improve daily from PP therapy. This web-based registry will provide relevant information on how the database research tools may improve our daily clinical practice. Conclusions This multicenter, prospective registry is the first to identify and characterize the role of PP on clinical outcome in COVID-19 patients. In recent years, data emerging from large registries have been increasingly used to provide real-world evidence on the effectiveness, quality, and safety of a clinical intervention. Indeed observation-based registries could be effective tools aimed at identifying specific clusters of patients within a large study population with widely heterogeneous clinical characteristics. Copyright
    corecore