Modelling of hydrostatic bearings for servo-cylinders

Abstract

Hydraulic servo cylinders are widely used in versatile industrial applications such as machine tools, industrial robots, autonomous manufacturing systems and special applications in laboratories. To reduce friction and allow smooth and controllable displacement of the actuator, hydrostatic journal bearings are used at the ends of the rod. The design and manufacturing of this elements is challenging since the good operation relays on the very small tolerances required to bear the load on the cylinder and to reduce leakages. In this work, a virtual design and test tool for hydrostatic journal bearing with pockets, developed in OpenModelica environment, is presented. The influence of eccentricity and manufacturing tolerances is then studied and discussed. The model proposed has the aim to explore the extreme and critical operating conditions of the servo-cylinder and to help and/or improve the design phase

    Similar works