24 research outputs found

    Towards the Achievement of the Sustainable Development Goals through Engineering Training for Labor Market Reintegration of Older Workers

    Get PDF
    The inclusion of training in the Sustainable Development Goals (SDGs) in higher education is essential to achieve them. In addition, labor market reintegration or improvement of older workers is a goal that an increasing number of people have set for themselves, especially in countries severely affected by crises. The union of these two premises has given rise to the application of a methodology in a master’s degree in engineering. This manuscript makes a double contribution: on the one hand, it presents the methodology with its application through a practical case; on the other hand, it covers how students perceive the application of non-traditional training techniques. The methodology is based on student-centered learning, using case-based teaching and inquiry-based learning. The students’ perception of this change in training was evaluated through a qualitative methodological approach for five consecutive years and through two types of surveys carried out each year, one of which involves comparison with traditional training methodologies. The results of the surveys show the favorable acceptance of this form of teaching, surpassing the results of traditional teaching methods by more than 25%. As a practical implication, this research identifies new ways of teaching complex subjects that facilitate training in SDGs and the subsequent labor market reintegration of older people

    Influence of Population Income and Climate on Air Pollution in Cities due to Buildings: The Case of Spain

    Get PDF
    Article number 1051Half of the world’s population lives in cities. In addition, more than 40% of greenhouse gas emissions are produced in buildings in the residential and tertiary sectors. Therefore, cities, and in particular their buildings, have a great influence on these emissions. In fact, they are reflected in several of the United Nations’ Sustainable Development Goals. Any measure taken to reach these goals has a significant impact from the point of view of reducing greenhouse gases. An understanding of these goals is the basis of greenhouse gas mitigation. This work analyzed the CO2 emissions from the buildings in cities as a function of the economic income of their inhabitants. For this, databases published by official sources were used. The origins of the CO2 are usually emitted by buildings were analyzed—electrical and thermal, in the form of natural gas. Another variable that influences these emissions is climate. To study only the income variable, the influence of climate has been eliminated. Also, to facilitate analysis, an index has been introduced. As an example of application of the proposed methodology, Spanish cities with more than 50,000 inhabitants were studied. The analysis was carried out by household and by inhabitant. The results showed the following: the higher the income of the citizens, the higher the total and thermal emissions; thermal consumption is elastic, while electrical consumption is inelastic; emissions of electrical origin are almost constant; emissions from electrical energy are greater than those from thermal energy; as income increases, the ratio between emissions of electrical and thermal origin decreases

    Centralized Control of Distribution Networks with High Penetration of Renewable Energies

    Get PDF
    Distribution networks were conceived to distribute the energy received from transmission and subtransmission to supply passive loads. This approach, however, is not valid anymore due to the presence of distributed generation, which is mainly based on renewable energies, and the increased number of plug-in electric vehicles that are connected at this voltage level for domestic use. In this paper the ongoing transition that distribution networks face is addressed. Whereas distributed renewable energy sources increase nodal voltages, electric vehicles result in demand surges higher than the load predictions considered when planning these networks, leading to congestion in distribution lines and transformers. Additionally, centralized control techniques are analyzed to reduce the impact of distributed generation and electric vehicles and increase their effective integration. A classification of the different methodologies applied to the problems of voltage control and congestion management is presented.Unión Europea Convenio 764090Ministerio de Ciencia e Innovación CER-2019101

    On the Remuneration to Electrical Utilities and Budgetary Allocation for Substation Maintenance Management

    Get PDF
    The liberalization of electricity markets has produced a great change in electrical utilities. One of these changes has affected the methodology for setting their remuneration. Depending on the country, these are different. Despite the wide range of remuneration methodologies for the electricity market of each country, they all feature one common element: the remuneration of operation and maintenance. One of the messages that this remuneration transmits is the need to extend the useful life of the facilities to allow sustainable development. This article focuses on the remuneration schemes of electrical utilities, the classification of substations for the definition of their maintenance programs, and the budget allocation for the execution of maintenance in these critical infrastructures. The particularity of these facilities, in which it is generally necessary to de-energize some of their parts for maintenance, has also been taken into account. To this end, a simple methodology currently used is presented based on the standardization of the bays of the substations and their classification into levels of importance. This classification into levels enables the facilities to be grouped according to similarities in their maintenance plans, although they differ from each other in terms of the periodicity of the application of maintenance procedures. This methodology guarantees a similar distribution of maintenance activities and financial needs over the years. In addition, the methodology allows one to know the importance of each substation (since the greater the equivalent weight, the greater the importance). Finally, the application of the proposed methodology in a real case is presented. It shows the simplicity, effectiveness, and lamination of the budgetary allocation of the proposed methodology, this being the main contribution of the formulation.Ministerio de Ciencia e Innovación PID2020-116433RB-I00Agencia Estatal de Investigación AEI/10.13039/5011000110

    Influence of cities population size on their energy consumption and CO2 emissions: the case of Spain

    Get PDF
    Half of the world population live in the cities. Cities energy consumption, environmental impact, and the opportunities they provide for our planet’s sustainability make them attractive for governmental authorities. Any action taken in the cities has immediate repercussions. For this reason, many statistical data are published every year. This paper makes the best use of these data to calculate cities CO2 emissions and their thermal and electric energy consumption. The methodology applied takes into consideration each city size by number of inhabitants and gets results per inhabitant and household. This will make possible to put into practice the right actions to reduce CO2 emissions and to use alternative energy. This paper also defines an index to facilitate and simplify the analysis of results. This study was applied to the case of Spain to show the methodology here proposed. In fact, this type of study has never been carried out in Spain before. With this purpose, the 145 Spanish cities with more than 50,000 people were considered. Results show that cities with larger populations present higher consumptions per inhabitant and household. The smallest the population of a city is, the less energy the city consumes. However, electric energy consumption remains constant regardless of the population size. With regard to the CO2 emissions, results bring to light that the biggest cities produce the highest emissions. Furthermore, comparing emissions produced by electrical sources to the total emissions, it was concluded that the smallest cities produce the highest electrical emissions

    Influence of Population Income on Energy Consumption and CO2 Emissions in Buildings of Cities

    No full text
    More than half of the world’s population lives in cities. A large part of the emissions and energy consumption corresponds to buildings, both in the residential sector and in the service sector. This means that a large part of the measures taken by governments to reduce energy consumption and greenhouse gas emissions are focused on this sector. With this background, this paper studies energy consumption in city buildings and the CO2 emissions they produce. It only makes use of publicly available data. The analysis is made from the point of view of income per inhabitant, and the results are obtained per inhabitant and household. To facilitate the analysis of the results, an index has been defined. The main contributions of this work are to analyze energy consumption and emissions due to buildings, study them from the point of view of the income of their inhabitants, and consider cities individually. The proposed methodology has been applied to the case of Spain. A total of 145 Spanish cities that have more than 50,000 inhabitants have been studied. The results show that the higher the income, the higher the consumption and emissions. Electricity consumptions are almost inelastic, while those of thermal origin are greatly influenced by the level of income. Regarding CO2 emissions, the percentage of emissions of electrical origin with respect to total emissions is higher than that of thermal origin. In addition, the lower the income, the higher the percentage of emissions of electrical origin.Ministerio de Ciencia e Innovación PID2020-116433RB-I00 (PID2020-116433RB-I00/AEI/10.13039/501100011033

    Influence of population income on energy consumption for heating and its CO2 emissions in cities

    Get PDF
    Article number 4531As a result of the increase in city populations, and the high energy consumption and emissions of buildings, cities in general, and buildings in particular, are the focus of attention for public organizations and utilities. Heating is among the largest consumers of energy in buildings. This study examined the influence of the income of inhabitants on the consumption of energy for heating and the CO2 emissions in city buildings. The study was carried out using equivalized disposable income as the basis for the analysis and considered the economies of scale of households. The results are shown per inhabitant and household, by independently considering each city. Furthermore, to more clearly identify the influence of the population income, the study was also carried out without considering the influence of the climate. The method was implemented in the case of Spain. For this purpose, Spanish cities with more than 50,000 inhabitants were analyzed. The results show that, both per inhabitant and per household, the higher the income of the inhabitants, the greater the consumption of energy for heating and the greater the emissions in the city. This research aimed to help energy utilities and policy makers make appropriate decisions, namely, planning for the development of facilities that do not produce greenhouse gases, and enacting laws to achieve sustainable economies, respectively. The overall aim is to achieve the objective of mitigating the impact of emissions and the scarcity of energy resources

    Influence of Population Density on CO2 Emissions Eliminating the Influence of Climate

    No full text
    More than 50% of the world’s population lives in cities. Its buildings consume more than a third of the energy and generate 40% of the emissions. This makes cities in general and their buildings in particular priority points of attention for policymakers and utilities. This paper uses population density as a variable to know its influence on energy consumption and emissions produced in buildings. Furthermore, to show its effect more clearly, the influence of the climate was eliminated. The usual energy consumption in buildings is thermal and electrical. The study was carried out at the city level, both per inhabitant and per household. The area actually occupied by the city was considered. The proposed method was applied to the case of Spanish cities with more than 50,000 inhabitants. The results show that the higher the population density, the higher the energy consumption per inhabitant and household in buildings. The consumption of thermal energy is elastic, while that of electrical energy is inelastic, varying more than 100% between extreme groups. Regarding CO2 emissions, the higher the population density, the higher the emissions. Emissions of electrical origin barely vary by 2% and are greater than those of thermal origin. In addition, the proportion of emissions of electrical origin, with respect to the total, decreases with increasing population density from 74% to 55%. This research aims to help policymakers and utilities to take the appropriate measures that favor the use of renewable energies and reduce CO2 emissions.Agencia Estatal de Investigación PID2020-116433RB-I0

    Power system parameter estimation: a survey

    No full text
    Versión aceptada en repositorio, permiso del editor: https://v2.sherpa.ac.uk/id/publication/3558This paper deals with the problem of network parameter errors in state estimation. First of all, some experimental results are presented showing the influence of these errors on the performance of WeightedLeast Squares state estimators. Secondly, the preliminary step of identifying suspicions network parameters is briefly discussed. A classification of the techniques proposed in the literature to estimate parameter errors is then suggested, fnllowed by a description of the main ideas behind each method. Finally, a discussion is included on the possibilities and limitations of every class of methods
    corecore