4 research outputs found

    Microsatellite primers for two threatened orchids in Florida: Encyclia tampensis and Cyrtopodium punctatum (Orchidaceae)1

    Get PDF
    Premise of the study: The Million Orchid Project at Fairchild Tropical Botanic Garden is an initiative to propagate native orchids for reintroduction into Miami?s urban landscapes. The aim of this study was to develop microsatellites for Encyclia tampensis and Cyrtopodium punctatum (Orchidaceae). Methods and Results: Ten microsatellites were developed for each species. For E. tampensis sampled from the natural population, allele numbers ranged from one to four, with an average observed heterozygosity (Ho) of 0.314 and average expected heterozygosity (He) of 0.281. For the individuals from cultivation, allele numbers ranged from one to six, with an average Ho of 0.35 and an average He of 0.224. For C. punctatum, allele numbers ranged from one to three, with an average Ho of 0.257 and an average He of 0.272. Conclusions: These microsatellites will be used to assess the genetic diversity of natural and cultivated populations with the intention of guiding genetic breeding under the Million Orchid Project

    NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    Get PDF
    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained Ī±-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamineā€™s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants

    NMDAR inhibition-independent antidepressant actions of ketamine metabolites

    No full text
    Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained Ī±-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamineā€™s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants
    corecore