4 research outputs found

    Local quantum ergodic conjecture

    Full text link
    The Quantum Ergodic Conjecture equates the Wigner function for a typical eigenstate of a classically chaotic Hamiltonian with a delta-function on the energy shell. This ensures the evaluation of classical ergodic expectations of simple observables, in agreement with Shnirelman's theorem, but this putative Wigner function violates several important requirements. Consequently, we transfer the conjecture to the Fourier transform of the Wigner function, that is, the chord function. We show that all the relevant consequences of the usual conjecture require only information contained within a small (Planck) volume around the origin of the phase space of chords: translations in ordinary phase space. Loci of complete orthogonality between a given eigenstate and its nearby translation are quite elusive for the Wigner function, but our local conjecture stipulates that their pattern should be universal for ergodic eigenstates of the same Hamiltonian lying within a classically narrow energy range. Our findings are supported by numerical evidence in a Hamiltonian exhibiting soft chaos. Heavily scarred eigenstates are remarkable counter-examples of the ergodic universal pattern.Comment: 4 figure

    Symmetry breaking: A tool to unveil the topology of chaotic scattering with three degrees of freedom

    Full text link
    We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection between the chaotic invariant set, the scattering functions and the singularities in the cross section for a class of scattering systems with one open and two closed degrees of freedom.Comment: 13 pages and 8 figure
    corecore