4 research outputs found

    The Major Storage Protein in Potato Tuber Is Mobilized by a Mechanism Dependent on Its Phosphorylation Status

    Get PDF
    The role of the protein phosphorylation mechanism in the mobilization of vegetative storage proteins (VSPs) is totally unknown. Patatin is the major VSP of the potato (Solanum tuberosum L.) tuber that encompasses multiple differentially phosphorylated isoforms. In this study, temporal changes in the phosphorylation status of patatin isoforms and their involvement in patatin mobilization are investigated using phosphoproteomic methods based on targeted two-dimensional electrophoresis (2-DE). High-resolution 2-DE profiles of patatin isoforms were obtained in four sequential tuber life cycle stages of Kennebec cultivar: endodormancy, bud break, sprouting and plant growth. In-gel multiplex identification of phosphorylated isoforms with Pro-Q Diamond phosphoprotein-specific stain revealed an increase in the number of phosphorylated isoforms after the tuber endodormancy stage. In addition, we found that the phosphorylation status of patatin isoforms significantly changed throughout the tuber life cycle (P < 0.05) using the chemical method of protein dephosphorylation with hydrogen fluoride-pyridine (HF-P) coupled to 2-DE. More specifically, patatin phosphorylation increased by 32% from endodormancy to the tuber sprouting stage and subsequently decreased together with patatin degradation. Patatin isoforms were not randomly mobilized because highly phosphorylated Kuras-isoforms were preferably degraded in comparison to less phosphorylated non-Kuras isoforms. These results lead us to conclude that patatin is mobilized by a mechanism dependent on the phosphorylation status of specific isoforms.This research was supported by funds from the ConsellerĂ­a do Medio Rural (Xunta de Galicia, Spain)S

    The first evidence of global meat phosphoproteome changes in response to pre-slaughter stress

    Get PDF
    Pre-slaughter stress (PSS) impairs animal welfare and meat quality. Dark, firm and dry (DFD) are terms used to designate poor quality meats induced by PSS. Protein phosphorylation can be a potentially significant mechanism to explain rapid and multiple physiological and biochemical changes linked to PSS-dependent muscle-to-meat conversion. However, the role of reversible phosphorylation in the response to PSS is still little known. In this study, we report a comparative phosphoproteomic analysis of DFD and normal meats at 24 h post-mortem from the longissimus thoracis (LT) bovine muscle of male calves of the Rubia Gallega breed. For this purpose, two-dimensional gel electrophoresis (2-DE), in-gel multiplex identification of phosphoproteins with PRO-Q Diamond phosphoprotein-specific stain, tandem (MALDI-TOF/TOF) mass spectrometry (MS), novel quantitative phosphoproteomic statistics and bioinformatic tools were usedMass spectrometry analysis, writing of the manuscript and article-processing charges were supported by grant RTA 2014–00034-C04 from the Instituto Nacional de Investigación y Tecnología Agraria (INIA, Spain). Meat samples were obtained by a project FEADER 2010–04 (Consellería de Medio Rural of Xunta de Galicia, Spain)S

    Strategy towards Replacing Pork Backfat with a Linseed Oleogel in Frankfurter Sausages and Its Evaluation on Physicochemical, Nutritional, and Sensory Characteristics

    Get PDF
    Different health institutions from western countries ha–ve recommended a diet higher in polyunsaturated fats, especially of the n-3 family. However, this is not a trivial task, especially for meat-processing sectors. The objective of this work was to assess the influence of replacing pork backfat with linseed oleogel on the main quality parameters of frankfurters. The frankfurters were formulated by the pork backfat replacement of 0% (control), 25% (SF-25), and 50% (SF-50), using a linseed oleogel gelled with beeswax. The determination of quality parameters (pH, colour, chemical composition, and texture parameters), the fatty acid profile, and the sensory evaluation was carried out for each batch. The fatty acid profile was substantially improved, and the saturated fatty acid (SFA) content was reduced from 35.15g/100g in control sausages to 33.95 and 32.34g/100 g in SF-25 and SF-50, respectively, and more balanced ratios n-6/n-3 were achieved. In addition, the sausages with linseed oleogel also decreased the cholesterol content from 25.08 mg/100 g in control sausages to 20.12 and 17.23 mg/100 g in SF-25 and SF-50, respectively. It may therefore be concluded that these innovative meat products are a healthier alternative. However, sensory parameters should be improved in order to increase consumer acceptability, and further research is needed.Artur Martins is the recipient of a fellowship supported by a doctoral advanced training (call NORTE-69-2015-15) funded by the European Social Fund under the scope of Norte2020—Programa Operacional Regional do Norte. Jose M. Lorenzo is a member of the HealthyMeat network, funded by CYTED (ref. 119RT0568). Thanks to GAIN (Axencia Galega de Innovación) for supporting this research (grant number IN607A2019/01)S

    Sensory and Physicochemical Analysis of Meat from Bovine Breeds in Different Livestock Production Systems, Pre-Slaughter Handling Conditions, and Ageing Time

    Get PDF
    Different bovine breeds and production systems are used worldwide, giving rise to differences in intrinsic and extrinsic characteristics of beef. In order to meet the consumer requirements, new approaches are currently being developed to guarantee tenderness, taste, and juiciness of beef. However, the final consumer perception is complex, and it is also affected by several interrelated variables. This study aimed to evaluate the physicochemical parameters and sensory profile of three Spanish cattle breeds under different livestock production systems (extensive and intensive) and pre-slaughter handling conditions (mixing and not mixing with unfamiliar individuals at pre-mortem time). Meat samples from each group were also studied at different ageing times (7 and 14 days). Regarding sensory attributes, twelve panelists assessed meat samples and an exhaustive statistical analysis was carried out. The most evident and strongest effect was the breed type, allowing a great differentiation among them using principal components and discriminant analysis. The livestock production system was the second most important parameter, significantly affecting odor, flavor, and textural profile (fibrousness). It can be concluded that there were marked differences in the traits of these beef that could be modified by other factors in order to fulfill consumer tastesAuthors are grateful to RTA 2014-00034-C04-00 (INIA-MINECO) and FEDER funds for the financial support. Special thanks for financial support from the Xunta de Galicia and the European Union (ESF) for supporting Raquel Rodríguez-Våzquez pre-doctoral scholarship. Daniel Franco and José M. Lorenzo are members of the HealthyMeat network, funded by CYTED (Ref. 119RT0568)S
    corecore