2,783 research outputs found

    Nonparaxial shape-preserving Airy beams with Bessel signature

    Full text link
    Spatially accelerating beams that are solutions to the Maxwell equations may propagate along incomplete circular trajectories, after which diffraction broadening takes over and the beams spread out. Taking these truncated Bessel wave fields to the paraxial limit, some authors sustained that it is recovered the known Airy beams (AiBs). Based on the angular spectrum representation of optical fields, we demonstrated that the paraxial approximation rigorously leads to off-axis focused beams instead of finite-energy AiBs. The latter will arise under the umbrella of a nonparaxial approach following elliptical trajectories in place of parabolas. Deviations from full-wave simulations appear more severely in beam positioning rather than its local profile

    Direct detection of fermion dark matter in the radiative seesaw model

    Get PDF
    We consider the scenario in the radiative seesaw model where the dark matter particle is the lightest Z2Z_2-odd fermion. We identify the regions of the parameter space of the model compatible with neutrino oscillation data, with the upper limits from rare charged lepton decays and with the observed dark matter abundance via thermal freeze-out, and we compute the dark matter scattering cross section with nuclei via the one-loop exchange of a photon, a Z0Z^0-boson or a Higgs boson. We find that the predicted spin-independent cross section lies below the current LUX limit, although, for some choices of parameters, above the expected sensitivity of XENON1T or LZ.Comment: 22 pages, 4 figure
    • …
    corecore