7 research outputs found

    Extraction of auroral oval boundaries from UVI images: A new FLICM clustering-based method and its evaluation

    Get PDF
    Based on the fuzzy local information c-means (FLICM) clustering algorithm, a new method is developed for extracting the equatorward and poleward boundaries of the auroral oval from images acquired by the Ultraviolet Imager (UVI) aboard the POLAR satellite. First, the method iteratively segments the UVI image with the FLICM clustering algorithm, according to an integrity criterion for the segmented auroral oval. Then, possible gaps in the extracted auroral oval are filled, based on prior knowledge of its shape. To evaluate the method objectively, the extracted boundaries are compared with the precipitating electron boundaries determined from DMSP satellite precipitation particle data. The evaluation results demonstrate that the proposed method generates more accurate auroral boundaries than traditional methods

    The Behaviors of Ionospheric Scintillations Around Different Types of Nightside Auroral Boundaries Seen at the Chinese Yellow River Station, Svalbard

    Get PDF
    Dynamical nightside auroral structures are often observed by the all sky imagers (ASI) at the Chinese Yellow River Station (CYRS) at Ny-Ålesund, Svalbard, located in the polar cap near poleward edge of the nightside auroral oval. The boundaries of the nightside auroral oval are stable during quiet geomagnetic conditions, while they often expand poleward and pass through the overhead area of CYRS during the substorm expansion phase. The motions of these boundaries often give rise to strong disturbances of satellite navigations and communications. Two cases of these auroral boundary motions have been introduced to investigate their associated ionospheric scintillations: one is Fixed Boundary Auroral Emissions (FBAE) with stable and fixed auroral boundaries, and another is Bouncing Boundary Auroral Emissions (BBAE) with dynamical and largely expanding auroral boundaries. Our observations show that the auroral boundaries, identified from the sharp gradient of the auroral emission intensity from the ASI images, were clearly associated with ionospheric scintillations observed by Global Navigation Satellite System (GNSS) scintillation receiver at the CYRS. However, amplitude scintillation (S4) and phase scintillation (σϕ) respond in an entirely different way in these two cases due to the different generation mechanism as well as different IMF (Interplanetary Magnetic Field) condition. S4 and σϕ have similar levels around the FBAE, while σϕ was much stronger than S4 around BBAE. The BBAE were associated with stronger particle precipitation during the substorm expansion phase. IU/IL, appeared to be a good indicator of the poleward moving auroral structures during the BBAE as well as FBAE

    Simultaneous optical and radar observations of poleward moving auroral forms under different IMF conditions

    Get PDF
    Using high temporal resolution optical data obtained from three-wavelength all-sky imagers at Chinese Yellow River Station in the Arctic, together with the EISCAT Svalbard radar (ESR) and SuperDARN radars, we investigated the dayside poleward moving auroral forms (PMAFs) and the associated plasma features in the polar ionosphere under different interplanetary magnetic field (IMF) conditions, between 0900 and 1010 UT on 22 December 2003. Simultaneous optical and ESR observations revealed that all PMAFs were clearly associated with pulsed particle precipitations. During northward IMF, particles can precipitate into lower altitudes and reach the ionospheric E-region, and there is a reverse convection cell associated with these PMAFs. This cell is one of the typical signatures of the dayside high-latitude (lobe) reconnection in the polar ionosphere. These results indicate that the PMAFs were associated with the high-latitude reconnection. During southward IMF, the PMAFs show larger latitudinal motion, indicating a longer mean lifetime, and the associated ionospheric features indicate that the PMAFs were generated by the dayside low-latitude reconnection

    A Long Short-Term Memory Network for Plasma Diagnosis from Langmuir Probe Data

    No full text
    Electrostatic probe diagnosis is the main method of plasma diagnosis. However, the traditional diagnosis theory is affected by many factors, and it is difficult to obtain accurate diagnosis results. In this study, a long short-term memory (LSTM) approach is used for plasma probe diagnosis to derive electron density (Ne) and temperature (Te) more accurately and quickly. The LSTM network uses the data collected by Langmuir probes as input to eliminate the influence of the discharge device on the diagnosis that can be applied to a variety of discharge environments and even space ionospheric diagnosis. In the high-vacuum gas discharge environment, the Langmuir probe is used to obtain current–voltage (I–V) characteristic curves under different Ne and Te. A part of the data input network is selected for training, the other part of the data is used as the test set to test the network, and the parameters are adjusted to make the network obtain better prediction results. Two indexes, namely, mean squared error (MSE) and mean absolute percentage error (MAPE), are evaluated to calculate the prediction accuracy. The results show that using LSTM to diagnose plasma can reduce the impact of probe surface contamination on the traditional diagnosis methods and can accurately diagnose the underdense plasma. In addition, compared with Te, the Ne diagnosis result output by LSTM is more accurate

    Experimental confirmation of driving pressure boosting and smoothing for hybrid-drive inertial fusion at the 100-kJ laser facility

    No full text
    Abstract In laser-driven inertial confinement fusion, driving pressure boosting and smoothing are major challenges. A proposed hybrid-drive (HD) scheme can offer such ideal HD pressure performing stable implosion and nonstagnation ignition. Here we report that in the hemispherical and planar ablator targets installed in the semicylindrical hohlraum scaled down from the spherical hohlraum of the designed ignition target, under indirect-drive (ID) laser energies of ~43–50 kJ, the peak radiation temperature of 200 ± 6 eV is achieved. And using only direct-drive (DD) laser energies of 3.6–4.0 kJ at an intensity of 1.8 × 1015 W/cm2, in the hemispherical and planar targets the boosted HD pressures reach 3.8–4.0 and 3.5–3.6 times the radiation ablation pressure respectively. In all the above experiments, significant HD pressure smoothing and the important phenomenon of how a symmetric strong HD shock suppresses the asymmetric ID shock pre-compressed fuel are demonstrated. The backscattering and hot-electron energy fractions both of which are about one-third of that in the DD scheme are also measured
    corecore