9 research outputs found

    A quantitative analysis of the interplay of environment, neighborhood, and cell state in 3D spheroids

    Get PDF
    Cells react to their microenvironment by integrating external stimuli into phenotypic decisions via an intracellular signaling network. To analyze the interplay of environment, local neighborhood, and internal cell state effects on phenotypic variability, we developed an experimental approach that enables multiplexed mass cytometric imaging analysis of up to 240 pooled spheroid microtissues. We quantified the contributions of environment, neighborhood, and intracellular state to marker variability in single cells of the spheroids. A linear model explained on average more than half of the variability of 34 markers across four cell lines and six growth conditions. The contributions of cell-intrinsic and environmental factors to marker variability are hierarchically interdependent, a finding that we propose has general implications for systems-level studies of single-cell phenotypic variability. By the overexpression of 51 signaling protein constructs in subsets of cells, we also identified proteins that have cell-intrinsic and cell-extrinsic effects. Our study deconvolves factors influencing cellular phenotype in a 3D tissue and provides a scalable experimental system, analytical principles, and rich multiplexed imaging datasets for future studies

    Compensation of Signal Spillover in Suspension and Imaging Mass Cytometry

    Full text link
    The advent of mass cytometry increased the number of parameters measured at the single-cell level while decreasing the extent of crosstalk between channels relative to dye-based flow cytometry. Although reduced, spillover still exists in mass cytometry data, and minimizing its effect requires considerable expert knowledge and substantial experimental effort. Here, we describe a novel bead-based compensation workflow and R-based software that estimates and corrects for interference between channels. We performed an in-depth characterization of the spillover properties in mass cytometry, including limitations defined by the linear range of the mass cytometer and the reproducibility of the spillover over time and across machines. We demonstrated the utility of our method in suspension and imaging mass cytometry. To conclude, our approach greatly simplifies the development of new antibody panels, increases flexibility for antibody-metal pairing, opens the way to using less pure isotopes, and improves overall data quality, thereby reducing the risk of reporting cell phenotype artifacts.ISSN:2405-472

    An end-to-end workflow for multiplexed image processing and analysis

    Full text link
    Multiplexed imaging enables the simultaneous spatial profiling of dozens of biological molecules in tissues at single-cell resolution. Extracting biologically relevant information, such as the spatial distribution of cell phenotypes from multiplexed tissue imaging data, involves a number of computational tasks, including image segmentation, feature extraction and spatially resolved single-cell analysis. Here, we present an end-to-end workflow for multiplexed tissue image processing and analysis that integrates previously developed computational tools to enable these tasks in a user-friendly and customizable fashion. For data quality assessment, we highlight the utility of napari-imc for interactively inspecting raw imaging data and the cytomapper R/Bioconductor package for image visualization in R. Raw data preprocessing, image segmentation and feature extraction are performed using the steinbock toolkit. We showcase two alternative approaches for segmenting cells on the basis of supervised pixel classification and pretrained deep learning models. The extracted single-cell data are then read, processed and analyzed in R. The protocol describes the use of community-established data containers, facilitating the application of R/Bioconductor packages for dimensionality reduction, single-cell visualization and phenotyping. We provide instructions for performing spatially resolved single-cell analysis, including community analysis, cellular neighborhood detection and cell-cell interaction testing using the imcRtools R/Bioconductor package. The workflow has been previously applied to imaging mass cytometry data, but can be easily adapted to other highly multiplexed imaging technologies. This protocol can be implemented by researchers with basic bioinformatics training, and the analysis of the provided dataset can be completed within 5-6 h. An extended version is available at https://bodenmillergroup.github.io/IMCDataAnalysis/

    histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data

    Full text link
    Single-cell, spatially resolved omics analysis of tissues is poised to transform biomedical research and clinical practice. We have developed an open-source, computational histology topography cytometry analysis toolbox (histoCAT) to enable interactive, quantitative, and comprehensive exploration of individual cell phenotypes, cell-cell interactions, microenvironments, and morphological structures within intact tissues. We highlight the unique abilities of histoCAT through analysis of highly multiplexed mass cytometry images of human breast cancer tissues

    The single-cell pathology landscape of breast cancer

    Full text link
    Single-cell analyses have revealed extensive heterogeneity between and within human tumours1-4, but complex single-cell phenotypes and their spatial context are not at present reflected in the histological stratification that is the foundation of many clinical decisions. Here we use imaging mass cytometry5 to simultaneously quantify 35 biomarkers, resulting in 720 high-dimensional pathology images of tumour tissue from 352 patients with breast cancer, with long-term survival data available for 281 patients. Spatially resolved, single-cell analysis identified the phenotypes of tumour and stromal single cells, their organization and their heterogeneity, and enabled the cellular architecture of breast cancer tissue to be characterized on the basis of cellular composition and tissue organization. Our analysis reveals multicellular features of the tumour microenvironment and novel subgroups of breast cancer that are associated with distinct clinical outcomes. Thus, spatially resolved, single-cell analysis can characterize intratumour phenotypic heterogeneity in a disease-relevant manner, with the potential to inform patient-specific diagnosis

    A Map of Human Type 1 Diabetes Progression by Imaging Mass Cytometry

    No full text
    Type 1 diabetes (T1D) results from the autoimmune destruction of insulin-producing β cells. A comprehensive picture of the changes during T1D development is lacking due to limited sample availability, inability to sample longitudinally, and the paucity of technologies enabling comprehensive tissue profiling. Here, we analyzed 1,581 islets from 12 human donors, including eight with T1D, using imaging mass cytometry (IMC). IMC enabled simultaneous measurement of 35 biomarkers with single-cell and spatial resolution. We performed pseudotime analysis of islets through T1D progression from snapshot data to reconstruct the evolution of β cell loss and insulitis. Our analyses revealed that β cell destruction is preceded by a β cell marker loss and by recruitment of cytotoxic and helper T cells. The approaches described herein demonstrate the value of IMC for improving our understanding of T1D pathogenesis, and our data lay the foundation for hypothesis generation and follow-on experiments

    Breast tumor microenvironment structures are associated with genomic features and clinical outcome

    Full text link
    The functions of the tumor microenvironment (TME) are orchestrated by precise spatial organization of specialized cells, yet little is known about the multicellular structures that form within the TME. Here we systematically mapped TME structures in situ using imaging mass cytometry and multitiered spatial analysis of 693 breast tumors linked to genomic and clinical data. We identified ten recurrent TME structures that varied by vascular content, stromal quiescence versus activation, and leukocyte composition. These TME structures had distinct enrichment patterns among breast cancer subtypes, and some were associated with genomic profiles indicative of immune escape. Regulatory and dysfunctional T cells co-occurred in large 'suppressed expansion' structures. These structures were characterized by high cellular diversity, proliferating cells and enrichment for BRCA1 and CASP8 mutations and predicted poor outcome in estrogen-receptor-positive disease. The multicellular structures revealed here link conserved spatial organization to local TME function and could improve patient stratification

    Influence of node abundance on signaling network state and dynamics analyzed by mass cytometry

    Full text link
    Signaling networks are key regulators of cellular function. Although the concentrations of signaling proteins are perturbed in disease states, such as cancer, and are modulated by drug therapies, our understanding of how such changes shape the properties of signaling networks is limited. Here we couple mass-cytometry-based single-cell analysis with overexpression of tagged signaling proteins to study the dependence of signaling relationships and dynamics on protein node abundance. Focusing on the epidermal growth factor receptor (EGFR) signaling network in HEK293T cells, we analyze 20 signaling proteins during a 1-h EGF stimulation time course using a panel of 35 antibodies. Data analysis with BP-R2, a measure that quantifies complex signaling relationships, reveals abundance-dependent network states and identifies novel signaling relationships. Further, we show that upstream signaling proteins have abundance-dependent effects on downstream signaling dynamics. Our approach elucidates the influence of node abundance on signal transduction networks and will further our understanding of signaling in health and disease
    corecore