136 research outputs found

    Evaluation of physicochemical and glycaemic properties of commercial plant-based milk substitutes

    Get PDF
    The market for plant-based dairy-type products is growing as consumers replace bovine milk in their diet, for medical reasons or as a lifestyle choice. A screening of 17 different commercial plant-based milk substitutes based on different cereals, nuts and legumes was performed, including the evaluation of physicochemical and glycaemic properties. Half of the analysed samples had low or no protein contents (<0.5 %). Only samples based on soya showed considerable high protein contents, matching the value of cow’s milk (3.7 %). An in-vitro method was used to predict the glycaemic index. In general, the glycaemic index values ranged from 47 for bovine milk to 64 (almond-based) and up to 100 for rice-based samples. Most of the plant-based milk substitutes were highly unstable with separation rates up to 54.39 %/h. This study demonstrated that nutritional and physicochemical properties of plant-based milk substitutes are strongly dependent on the plant source, processing and fortification. Most products showed low nutritional qualities. Therefore, consumer awareness is important when plant-based milk substitutes are used as an alternative to cow’s milk in the diet

    Functionalisation of wheat and oat bran using single-strain fermentation and its impact on techno-functional and nutritional properties of biscuits

    Get PDF
    The adequate intake of dietary fbre is linked to several health benefts, for example, reducing the risk of non-communicable diseases, such as cardiovascular disease and diabetes. However, the population’s intake of dietary fbre is below the dosage recommended by the World Health Organisation. The incorporation of fbre ingredients, such as bran, in cereal based products afects the techno-functional and sensory properties, resulting in inferior product quality. To compensate quality loss, wheat bran (WB) and oat bran (OB) were fermented using the lactic acid bacterium strain Leuconostoc citreum TR116 prior to the application in a biscuit system. Two types of fermentation, one without any addition of sugars (FB) and one with the supplementation of 5% fructose and 5% sucrose to trigger the production of mannitol (FB+), were conducted and sugar and acid profles as well as pH and total titratable acids (TTA) were evaluated. Fermented WB showed a higher TTA (+58%) compared to fermented OB. Furthermore, FOB+resulted in higher microbial cell count and higher residual sugars after 48 h of fermentation. The application of fermented brans in a biscuit system showed a decrease in dough stickiness (− 41.7%) and an increase in dough hardness (+32%). The type of bran (WB and OB) as well as the type of fermentation (FB or FB+) infuenced the results of biscuit dough and biscuit quality (p&lt;0.005). Fermentation increased biscuit spreading, infuenced biscuit snap force, enhanced crunchiness and colour formation, and lowered the predicted glycaemic index. Fermented OB (FOB+) resulted in a sensory profle comparable to the control

    Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread

    Get PDF
    Celiac disease (CD) is an immune-mediated disease, triggered in genetically susceptible individuals by ingesting gluten from wheat, rye, barley, and other closely related cereal grains. Currently, the estimated prevalence of CD is around 1 % of the population in the western world and medical nutritional therapy (MNT) is the only accepted treatment for celiac disease. To date, the replacement of gluten in bread presents a significant technological challenge for the cereal scientist due to the low baking performance of gluten free products (GF). The increasing demand by the consumer for high quality gluten-free (GF) bread, clean labels and natural products is rising. Sourdough has been used since ancient times for the production of rye and wheat bread, its universal usage can be attributed to the improved quality, nutritional properties and shelf life of sourdough based breads. Consequently, the exploitation of sourdough for the production of GF breads appears tempting. This review will highlight how sourdough LAB can be an efficient cell factory for delivering functional biomolecules and food ingredients to enhance the quality of gluten free bread

    Lentil Fortification and Non-Conventional Yeasts as Strategy to Enhance Functionality and Aroma Profile of Craft Beer

    Get PDF
    During the last few years, consumer demand has been increasingly oriented to fermented foods with functional properties. This work proposed to use selected non-conventional yeasts (NCY) Lachancea thermotolerans and Kazachstania unispora in pure and mixed fermentation to produce craft beer fortified with hydrolyzed red lentils (HRL). For this, fermentation trials using pils wort (PW) and pils wort added with HRL (PWL) were carried out. HRL in pils wort improved the fermentation kinetics both in mixed and pure fermentations without negatively affecting the main analytical characters. The addition of HRL determined a generalized increase in amino acids concentration in PW. L. thermotolerans and K. unispora affected the amino acid profile of beers (with and without adding HRL). The analysis of by-products and volatile compounds in PW trials revealed a significant increase of some higher alcohols with L. thermotolerans and ethyl butyrate with K. unispora. In PWL, the two NCY showed a different behavior: an increment of ethyl acetate (K. unispora) and beta-phenyl ethanol (L. thermotolerans). Sensory analysis showed that the presence of HRL characterized all beers, increasing the perception of the fruity aroma in both pure and mixed fermentation

    Physiology of acetic acid bacteria and their role in vinegar and fermented beverages

    Get PDF
    Acetic acid bacteria (AAB) have, for centuries, been important microorganisms in the production of fermented foods and beverages such as vinegar, kombucha, (water) kefir, and lambic beer. Their unique form of metabolism, known as â oxidativeâ fermentation, mediates the transformation of a variety of substrates into products, which are of importance in the food and beverage industry and beyond; the most well-known of which is the oxidation of ethanol into acetic acid. Here, a comprehensive review of the physiology of AAB is presented, with particular emphasis on their importance in the production of vinegar and fermented beverages. In addition, particular reference is addressed toward Gluconobacter oxydans due to its biotechnological applications, such as its role in vitamin C production. The production of vinegar and fermented beverages in which AAB play an important role is discussed, followed by an examination of the literature relating to the health benefits associated with consumption of these products. AAB hold great promise for future exploitation, both due to increased consumer demand for traditional fermented beverages such as kombucha, and for the development of new types of products. Further studies on the health benefits related to the consumption of these fermented products and guidelines on assessing the safety of AAB for use as microbial food cultures (starter cultures) are, however, necessary in order to take full advantage of this important group of microorganisms

    From waste to taste. Application of fermented spent rootlet ingredients in a bread system

    Get PDF
    The process of upcycling and incorporating food by-products into food systems as functional ingredients has become a central focus of research. Barley rootlets (BR) are a by-product of the malting and brewing industries that can be valorised using lactic acid bacteria fermentation. This research investigates the effects of the inclusion of unfermented (BR-UnF), heat-sterilised (BR-Ster), and five fermented BR ingredients (using Weissella cibaria MG1 (BR-MG1), Leuconostoc citreum TR116 (BR-TR116), Lactiplantibacillus plantarum FST1.7 (BR-FST1.7), Lactobacillus amylovorus FST2.11 (BR-FST2.11), and Limosilactobacillus reuteri R29 (BR-R29) in bread. The antifungal compounds in BR ingredients and the impact of BR on dough rheology, gluten development, and dough mixing properties were analysed. Additionally, their effects on the techno-functional characteristics, in vitro starch digestibility, and sensory quality of bread were determined. BR-UnF showed dough viscoelastic properties and bread quality comparable to the baker's flour (BF). BR-MG1 inclusion ameliorated bread specific volume and reduced crumb hardness. Breads containing BR-TR116 had comparable bread quality to BF, while the inclusion of BR-R29 substantially slowed microbial spoilage. Formulations containing BR-FST2.11 and BR-FST1.7 significantly reduced the amounts of sugar released from breads during a simulated digestion and resulted in a sourdough-like flavour profile. This study highlights how BR fermentation can be tailored to achieve desired bread characteristics

    Functional properties of brewer’s spent grain protein isolate. The missing piece in the plant protein portfolio

    Get PDF
    Plant protein sources, as a part of developing sustainable food systems, are currently of interest globally. Brewer’s spent grain (BSG) is the most plentiful by-product of the brewing industry, representing ~85% of the total side streams produced. Although nutritionally dense, there are very few methods of upcycling these materials. High in protein, BSG can serve as an ideal raw material for protein isolate production. This study details the nutritional and functional characteristics of BSG protein isolate, EverPro, and compares these with the technological performance of the current gold standard plant protein isolates, pea and soy. The compositional characteristics are determined, including amino acid analysis, protein solubility, and protein profile among others. Related physical properties are determined, including foaming characteristics, emulsifying properties, zeta potential, surface hydrophobicity, and rheological properties. Regarding nutrition, EverPro meets or exceeds the requirement of each essential amino acid per g protein, with the exception of lysine, while pea and soy are deficient in methionine and cysteine. EverPro has a similar protein content to the pea and soy isolates, but far exceeds them in terms of protein solubility, with a protein solubility of ~100% compared to 22% and 52% for pea and soy isolates, respectively. This increased solubility, in turn, affects other functional properties; EverPro displays the highest foaming capacity and exhibits low sedimentation activity, while also possessing minimal gelation properties and low emulsion stabilising activity when compared to pea and soy isolates. This study outlines the functional and nutritional properties of EverPro, a brewer’s spent grain protein, in comparison to commercial plant protein isolates, indicating the potential for the inclusion of new, sustainable plant-based protein sources in human nutrition, in particular dairy alternative applications

    Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials

    Get PDF
    Plant-based foods are gaining popularity and the market is developing fast. This trend is based on several factors, like the change of lifestyle, interest in alternative diets, and the increasing awareness about sustainable production of food and especially proteins. Plant-based dairy substitutes can serve as an option to traditional food products, meeting many of these interests. However, the market is in its infancy and needs to progress. Trends show, that the market will change from being focused on mainly soya, almond and rice-based products, due to their unsustainable farming, and nutritional concerns, like genetic modification and low protein content. The market is likely to shift towards alternative plants to meet consumers' needs and desire for healthy, flavourful and intriguing products. In this regard, the aspect of allergy-free, like gluten-free products gain in importance. Research studies are approaching the nutritional quality of plant-based dairy substitutes, such as improving the protein quality and glycaemic properties. Furthermore, the application of these products or plant proteins as functional ingredients or substitutes for cow's milk in dairy products like cheese and yoghurt are disseminated. However, there is still a need for much more diversified studies in order to overcome stability, textural, nutritional and sensory problems

    FODMAP modulation as a dietary therapy for IBS: scientific and market perspective

    Get PDF
    A diet low in fermentable oligosaccharides, disaccharides, monosaccharides, and polyols (FODMAPs) is a promising therapeutic approach to reduce gastrointestinal symptoms associated with irritable bowel syndrome (IBS). However, a shift toward a more sustainable, healthy diet with higher inclusion of whole-grain cereals (i.e., wheat, rye, barley) and pulses, naturally rich in FODMAPs, poses a severe challenge for susceptible individuals. Dietary restriction of fermentable carbohydrates (commonly called the "low FODMAP diet") has received significant consideration. Hence, the development of functional low FODMAP products is emerging in food science and the food industry. In this review, we evaluate the most promising yet neglected (bio)-technological strategies adopted for modulating the FODMAP contents in complex food systems and the extent of their uptake in the global food market. We extensively investigated the global low FODMAP market, contrasted with the status quo in food science and discussed the key principles and concomitant challenges of targeted FODMAP reduction strategies. Powerful tools are available which are based either on the use of ingredients where FODMAPs have been physically removed (e.g., by membrane filtration) or biotechnologically reduced during the food processing, mediated by added enzymes, microbial enzymes during a fermentation process, and seed endogenous enzymes. However, <10% of the small market of functional prod-ucts with a low FODMAP claim (total∼800 products) used any of the targetedFODMAP reduction techniques. The global market is currently dominated bygluten-free products, which are naturally low in FODMAPs and characterizedby inferior sensory attributes

    Characterization of the FODMAP-profile in cereal-product ingredients

    Get PDF
    Cereal-based products, such as bread, are staple foods in the western diet. Due to the nature of their basic ingredients and the diversity of recipes, the amount of fermentable short-chain carbohydrates (FODMAPs) in those products may be high. This study characterized the FODMAP-profiles of a broad range of cereal-product ingredients, serving as a basis for low FODMAP product development. Different cereals, pseudo-cereals, gluten-free flours, pulses, pulse protein ingredients, commercial sprouts, and other cereal-product ingredients were analyzed, using anion-exchange chromatography with electrochemical detection. Wheat and related cereals were high in fructans. Pulses, such as peas contained high galactooligosaccharides (GOS) amounts. Whereas GOS levels in pulse protein ingredients varied, depending on their production. Gluten-free flours, for instance, rice-flour, showed low FODMAP-profiles. Amongst those, buckwheat, which does not contain any of the FODMAPs investigated, contained high amounts of other soluble non-digestible carbohydrates, namely fagopyritols; these may have a similar effect on a sensitive gut as GOS. Finally, ingredients contained mainly high levels of fructans and GOS. Yet, the analysis of commonly consumed commercial cereal products, including bread, pasta, crackers and biscuits, highlighted the relevance of lactose, fructose in excess of glucose and polyols. These products serve as benchmarks for further product development
    • …
    corecore