265 research outputs found

    Decoherence spectroscopy with individual two-level tunneling defects

    Get PDF
    Recent progress with microfabricated quantum devices has revealed that an ubiquitous source of noise originates in tunneling material defects that give rise to a sparse bath of parasitic two-level systems (TLSs). For superconducting qubits, TLSs residing on electrode surfaces and in tunnel junctions account for a major part of decoherence and thus pose a serious roadblock to the realization of solid-state quantum processors. Here, we utilize a superconducting qubit to explore the quantum state evolution of coherently operated TLSs in order to shed new light on their individual properties and environmental interactions. We identify a frequency-dependence of TLS energy relaxation rates that can be explained by a coupling to phononic modes rather than by anticipated mutual TLS interactions. Most investigated TLSs are found to be free of pure dephasing at their energy degeneracy points, around which their Ramsey and spin-echo dephasing rates scale linearly and quadratically with asymmetry energy, respectively. We provide an explanation based on the standard tunneling model, and identify interaction with incoherent low-frequency (thermal) TLSs as the major mechanism of the pure dephasing in coherent high-frequency TLS.Comment: 6 pages, 3 figures, supplementary material availabl

    Quantum simulation of the spin-boson model with a microwave circuit

    Get PDF
    We consider superconducting circuits for the purpose of simulating the spin-boson model. The spin-boson model consists of a single two-level system coupled to bosonic modes. In most cases, the model is considered in a limit where the bosonic modes are sufficiently dense to form a continuous spectral bath. A very well known case is the ohmic bath, where the density of states grows linearly with the frequency. In the limit of weak coupling or large temperature, this problem can be solved numerically. If the coupling is strong, the bosonic modes can become sufficiently excited to make a classical simulation impossible. Here, we discuss how a quantum simulation of this problem can be performed by coupling a superconducting qubit to a set of microwave resonators. We demonstrate a possible implementation of a continuous spectral bath with individual bath resonators coupling strongly to the qubit. Applying a microwave drive scheme potentially allows us to access the strong-coupling regime of the spin-boson model. We discuss how the resulting spin relaxation dynamics with different initialization conditions can be probed by standard qubit-readout techniques from circuit quantum electrodynamics.Comment: 23 pages, 10 figure

    Momentum dependence of the excitons in pentacene

    Full text link
    We have carried out electron energy-loss investigations of the lowest singlet excitons in pentacene at 20 K. Our studies allow to determine the full exciton band structure in the a*,b* reciprocal lattice plane. The lowest singlet exciton can move coherently within this plane, and the resulting exciton dispersion is highly anisotropic. The analysis of the energetically following (satellite) features indicates a strong admixture of charge transfer excitations to the exciton wave function.Comment: 13 pages, 4 figure

    Using a multi-lens framework for landscape decisions

    Get PDF
    1. Landscape decisions are multi-faceted. Framing landscape decision-making as a governance process that requires a collective approach can encourage key stakeholders to come together to co-inform a discussion about their priorities and what constitutes good governance, leading to more holistic landscape decisions. 2. In this paper, we recognise that a suite of complementary and multi-dimensional approaches are in practice used to inform and evaluate land use decisions. We have called these approaches ‘lenses’ because they each provide a different perspective on the same problem. The four lenses are: i) Power and Market Gain, ii) Ecosystem Services, iii), Place-based Identity and iv) Ecocentric. Each brings a different set of evidence and viewpoints (narrative, qualitative and experiential, as well as quantitative metrics such as monetary) to the decision-making process and can potentially reveal problems and solutions that others do not. 3. Considering all lenses together allows dialogue to take place which can reveal the true complexities of landscape decision-making and can facilitate more effective and more holistic decisions. Employing the lenses requires governance structures that give equal weight to all lenses, enable dialogue and coexistence between top down and bottom-up approaches, and permit adaptation to local and granular place-specifics rather than developing “one-size-fits-all” solutions. 4. We propose that formalising the process of balancing all the lenses requires public participation, and that a lens approach should be used to support landscape decisions alongside a checklist that facilitates transparency in the conversation, showing how all evidence has been considered and critically assessed

    Tsunami-Related Data: A Review of Available Repositories Used in Scientific Literature

    Get PDF
    Various organizations and institutions store large volumes of tsunami-related data, whose availability and quality should benefit society, as it improves decision making before the tsunami occurrence, during the tsunami impact, and when coping with the aftermath. However, the existing digital ecosystem surrounding tsunami research prevents us from extracting the maximum benefit from our research investments. The main objective of this study is to explore the field of data repositories providing secondary data associated with tsunami research and analyze the current situation. We analyze the mutual interconnections of references in scientific studies published in the Web of Science database, governmental bodies, commercial organizations, and research agencies. A set of criteria was used to evaluate content and searchability. We identified 60 data repositories with records used in tsunami research. The heterogeneity of data formats, deactivated or nonfunctional web pages, the generality of data repositories, or poor dataset arrangement represent the most significant weak points. We outline the potential contribution of ontology engineering as an example of computer science methods that enable improvements in tsunami-related data management

    Decoherence spectroscopy with individual two-level tunneling defects

    Get PDF
    Recent progress with microfabricated quantum devices has revealed that an ubiquitous source of noise originates in tunneling material defects that give rise to a sparse bath of parasitic two-level systems (TLSs). For superconducting qubits, TLSs residing on electrode surfaces and in tunnel junctions account for a major part of decoherence and thus pose a serious roadblock to the realization of solid-state quantum processors. Here, we utilize a superconducting qubit to explore the quantum state evolution of coherently operated TLSs in order to shed new light on their individual properties and environmental interactions. We identify a frequency-dependence of TLS energy relaxation rates that can be explained by a coupling to phononic modes rather than by anticipated mutual TLS interactions. Most investigated TLSs are found to be free of pure dephasing at their energy degeneracy points, around which their Ramsey and spin-echo dephasing rates scale linearly and quadratically with asymmetry energy, respectively. We provide an explanation based on the standard tunneling model, and identify interaction with incoherent low-frequency (thermal) TLSs as the major mechanism of the pure dephasing in coherent high-frequency TLS

    The Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Sarcopenia Diagnosis and Management Task Force: Findings from the consumer Delphi process

    Get PDF
    OnlinePublObjectives: To develop guidelines, informed by health-care consumer values and preferences, for sarcopenia prevention, assessment and management for use by clinicians and researchers in Australia and New Zealand. Methods: A three-phase Consumer Expert Delphi process was undertaken between July 2020 and August 2021. Consumer experts included adults with lived experience of sarcopenia or health-care utilisation. Phase 1 involved a structured meeting of the Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Sarcopenia Diagnosis and Management Task Force and consumer representatives from which the Phase 2 survey was developed. In Phase 2, consumers from Australia and New Zealand were surveyed online with opinions sought on sarcopenia outcome priorities, consultation preferences and interventions. Findings were confirmed and disseminated in Phase 3. Descriptive statistical analyses were performed. Results: Twenty-four consumers (mean±standard deviation age 67.5 ±12.8 years, 18 women) participated in Phase 2. Ten (42%) identified as being interested in sarcopenia, 7 (29%) were health-care consumers and 6 (25%) self-reported having/believing they have sarcopenia. Consumers identified physical performance, living circumstances, morale, quality of life and social connectedness as the most important outcomes related to sarcopenia. Consumers either had no preference (46%) or preferred their doctor (40%) to diagnose sarcopenia and preferred to undergo assessments at least yearly (54%). For prevention and treatment, 46% of consumers preferred resistance exercise, 2–3 times per week (54%). Conclusions: Consumer preferences reported in this study can inform the implementation of sarcopenia guidelines into clinical practice at local, state and national levels across Australia and New Zealand.Jesse Zanke ... Elsa Dent ... Renuka Visvanathan ... Solomon Yu ... et al
    corecore