104 research outputs found

    Absorption and Screening in Phycomyces

    Get PDF
    In vivo absorption measurements were made through the photosensitive zones of Phycomyces sporangiophores and absorption spectra are presented for various growth media and for wavelengths between 400 and 580 mµ. As in mycelia, ß-carotene was the major pigment ordinarily found. The addition of diphenylamine to the growth media caused a decrease in ß-carotene and an increase in certain other carotenoids. Growth in the dark substantially reduced the amount of ß-carotene in the photosensitive zone; however, growth on a lactate medium failed to suppress ß-carotene in the growing zone although the mycelia appeared almost colorless. Also when diphenylamine was added to the medium the absorption in the growing zone at 460 mµ was not diminished although the colored carotenoids in the bulk of the sporangiophore were drastically reduced. Absorption which is characteristic of the action spectra was not found. Sporangiophores immersed in fluids with a critical refractive index show neither positive nor negative tropism. Measurements were made of the critical refractive indices for light at 495 and 510 mµ. The critical indices differed only slightly. Assuming primary photoreceptors at the cell wall, the change in screening due to absorption appears too large to be counterbalanced solely by a simple effect of the focusing change. The possibility is therefore advanced that the receptors are internal to most of the cytoplasm; i.e., near the vacuole

    The Land Conservation Plan for New Hampshire\u27s Coastal Watershed

    Get PDF
    Spanning 990 square miles and 46 towns, New Hampshire’s coastal watersheds harbor exceptional and irreplaceable natural, cultural, recreational and scenic resources (Figure 1). To advance the long-term protection of these resources, the State of New Hampshire, acting through the NH Coastal Program and the NH Estuaries Project, sought to develop a comprehensive, science-based land conservation plan for our coastal watersheds. The State engaged a partnership of The Nature Conservancy, Society for the Protection of New Hampshire Forests, Rockingham Planning Commission, and Strafford Regional Planning Commission to develop the plan. The New Hampshire Charitable Foundation’s Piscataqua Region supported this effort as a regional approach to setting land conservation priorities and strategies, and provided substantial matching funds. Southeastern New Hampshire is changing before our eyes. The region’s forests, wildlife habitat, clean water, and scenic vistas are increasingly threatened by sprawling development, roads, and other irreversible land use changes. Over the past 36 years, in Rockingham and Strafford Counties, an average of 2,230 acres per year has been converted from undeveloped land to a developed condition. And there is no indication that the pace of development will slow in the foreseeable future. The two Counties are projected to add more than 100,000 new residents from 2000 to 2025, and land values continue to rise steeply. With this conversion comes the loss of important natural resource values provided by undeveloped land, especially for plant and wildlife habitat, clean water, and other “ecological services.” To ensure a healthy environment into the future, it is essential that communities identify, retain, and protect the remaining undeveloped lands and waters that support the most important of these natural resource values and functions. Fortunately, it is not too late to protect the essential natural resources of Great Bay, Hampton Harbor, and the many important watersheds feeding into New Hampshire’s coastline. Thanks to the foresight and dedicated efforts of communities, citizens, conservation organizations and public agencies, more than nine percent of our coastal watersheds are permanently conserved. Many municipalities and communities have embraced land conservation through open space bonds, master plans, and local ordinances. New federal funds, such as the Coastal and Estuarine Land Conservation program, are available for conservation in the coastal watersheds. These protected lands and waters form the basis of a network of conservation areas that will help to safeguard our most critical natural resources over time. Now, more than ever, coastal New Hampshire communities need to ensure that they are making smart, enduring conservation investments in land protection and other effective local and regional strategies to have the greatest and most long-lasting beneficial impact on coastal Now, more than ever, coastal New Hampshire communities need to ensure that they are making smart, enduring conservation investments in land protection and other effective local and regional strategies to have the greatest and most long-lasting beneficial impact on coasta

    Relativistic Effect on Low-Energy Nucleon-Deuteron Scattering

    Full text link
    The relativistic effect on differential cross sections, nucleon-to-nucleon and nucleon-to-deuteron polarization transfer coefficients, and the spin correlation function, of nucleon-deuteron elastic scattering is investigated employing several three-dimensional relativistic three-body equations and several nucleon-nucleon potentials. The polarization transfer coefficients are found to be sensitive to the details of the nucleon-nucleon potentials and the relativistic dynamics employed, and prefer trinucleon models with the correct triton binding energy. (To appear in Phys. Rev. C)Comment: pages: 21, LaTex text + 7 ps-figures at the en

    Proton-Deuteron Elastic Scattering from 2.5 to 22.5 MeV

    Get PDF
    We present the results of a calculation of differential cross sections and polarization observables for proton-deuteron elastic scattering, for proton laboratory energies from 2.5 to 22.5 MeV. The Paris potential parametrisation of the nuclear force is used. As solution method for the charged-composite particle equations the 'screening and renormalisation approach' is adopted which allows to correctly take into account the Coulomb repulsion between the two protons. Comparison is made with the precise experimental data of Sagara et al. [Phys. Rev. C 50, 576 (1994)] and of Sperison et al. [Nucl. Phys. A422, 81 (1984)].Comment: 24 pages, 8 eps figures, uses REVTe

    Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data

    Get PDF
    The pi-N s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the pionic deuterium x-ray data using a non-relativistic approach in which the pi-N interaction is simulated by a short-ranged potential. The pi-d scattering length has been calculated exactly by solving the Faddeev equations and also by using a static approximation. It has been shown that the same very accurate static formula for pi-d scattering length can be derived (i) from a set of boundary conditions; (ii) by a reduction of Faddeev equations; and (iii) through a summation of Feynman diagrams. By imposing the requirement that the pi-d scattering length, resulting from Faddeev-type calculation, be in agreement with pionic deuterium data, we obtain bounds on the pi-N scattering lengths. The dominant source of uncertainty on the deduced values of the pi-N scattering lengths are the experimental errors in the pionic hydrogen data.Comment: RevTeX, 20 pages,4 PostScript figure

    eta d scattering in the region of the S11 resonance

    Full text link
    We have studied the reaction eta d -> eta d close to threshold within a nonrelativistic three-body formalism. We considered several eta N and NN models, in particular potentials with separable form, fitted to the low-energy eta N and NN data to represent the two-body interactions. We found that with realistic two-body interactions a quasibound state does not exist in this system, although there is an enhancement of the cross section by one order of magnitude, in the region near threshold, which is a genuine three-body effect not predicted within the impulse approximation.Comment: 18 pages Revtex, 2 figure

    Factors associated with disease evolution in Greek patients with inflammatory bowel disease

    Get PDF
    BACKGROUND: The majority of Crohn's disease patients with B1 phenotype at diagnosis (i.e. non-stricturing non-penetrating disease) will develop over time a stricturing or a penetrating pattern. Conflicting data exist on the rate of proximal disease extension in ulcerative colitis patients with proctitis or left-sided colitis at diagnosis. We aimed to study disease evolution in Crohn's disease B1 patients and ulcerative colitis patients with proctitis and left-sided colitis at diagnosis. METHODS: 116 Crohn's disease and 256 ulcerative colitis patients were followed-up for at least 5 years after diagnosis. Crohn's disease patients were classified according to the Vienna criteria. Data were analysed actuarially. RESULTS: B1 phenotype accounted for 68.9% of Crohn's disease patients at diagnosis. The cumulative probability of change in disease behaviour in B1 patients was 43.6% at 10 years after diagnosis. Active smoking (Hazard Ratio: 3.01) and non-colonic disease (non-L2) (Hazard Ratio: 3.01) were associated with behavioural change in B1 patients. Proctitis and left-sided colitis accounted for 24.2%, and 48.4% of ulcerative colitis patients at diagnosis. The 10 year cumulative probability of proximal disease extension in patients with proctitis and left-sided colitis was 36.8%, and 17.1%, respectively (p: 0.003). Among proctitis patients, proximal extension was more common in non-smokers (Hazard Ratio: 4.39). CONCLUSION: Classification of Crohn's disease patients in B1 phenotype should be considered as temporary. Smoking and non-colonic disease are risk factors for behavioural change in B1 Crohn's disease patients. Proximal extension is more common in ulcerative colitis patients with proctitis than in those with left-sided colitis. Among proctitis patients, proximal extension is more common in non-smokers

    8th International Conference on Few-body Systems and Nuclear Forces

    No full text
    • …
    corecore