41 research outputs found

    Identification of Interferon-Stimulated Genes with Antiretroviral Activity

    Get PDF
    SummaryInterferons (IFNs) exert their anti-viral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). The activity of known ISGs is insufficient to account for the antiretroviral effects of IFN, suggesting that ISGs with antiretroviral activity are yet to be described. We constructed an arrayed library of ISGs from rhesus macaques and tested the ability of hundreds of individual macaque and human ISGs to inhibit early and late replication steps for 11 members of the retroviridae from various host species. These screens uncovered numerous ISGs with antiretroviral activity at both the early and late stages of virus replication. Detailed analyses of two antiretroviral ISGs indicate that indoleamine 2,3-dioxygenase 1 (IDO1) can inhibit retroviral replication by metabolite depletion while tripartite motif-56 (TRIM56) accentuates ISG induction by IFNα and inhibits the expression of late HIV-1 genes. Overall, these studies reveal numerous host proteins that mediate the antiretroviral activity of IFNs

    The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin

    Get PDF
    Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition

    HIV therapy by a combination of broadly neutralizing antibodies in humanized mice

    Get PDF
    Human antibodies to human immunodeficiency virus-1 (HIV-1) can neutralize a broad range of viral isolates in vitro and protect non-human primates against infection. Previous work showed that antibodies exert selective pressure on the virus but escape variants emerge within a short period of time. However, these experiments were performed before the recent discovery of more potent anti-HIV-1 antibodies and their improvement by structure-based design. Here we re-examine passive antibody transfer as a therapeutic modality in HIV-1-infected humanized mice. Although HIV-1 can escape from antibody monotherapy, combinations of broadly neutralizing antibodies can effectively control HIV-1 infection and suppress viral load to levels below detection. Moreover, in contrast to antiretroviral therapy the longer half-life of antibodies led to control of viraemia for an average of 60 days after cessation of therapy. Thus, combinations of potent monoclonal antibodies can effectively control HIV-1 replication in humanized mice, and should be re-examined as a therapeutic modality in HIV-1-infected individuals

    Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants

    Get PDF
    Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh), African green monkeys (agm) and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins

    Clathrin Facilitates the Morphogenesis of Retrovirus Particles

    Get PDF
    The morphogenesis of retroviral particles is driven by Gag and GagPol proteins that provide the major structural component and enzymatic activities required for particle assembly and maturation. In addition, a number of cellular proteins are found in retrovirus particles; some of these are important for viral replication, but many lack a known functional role. One such protein is clathrin, which is assumed to be passively incorporated into virions due to its abundance at the plasma membrane. We found that clathrin is not only exceptionally abundant in highly purified HIV-1 particles but is recruited with high specificity. In particular, the HIV-1 Pol protein was absolutely required for clathrin incorporation and point mutations in reverse transcriptase or integrase domains of Pol could abolish incorporation. Clathrin was also specifically incorporated into other retrovirus particles, including members of the lentivirus (simian immunodeficiency virus, SIVmac), gammaretrovirus (murine leukemia virus, MLV) and betaretrovirus (Mason-Pfizer monkey virus, M-PMV) genera. However, unlike HIV-1, these other retroviruses recruited clathrin primarily using peptide motifs in their respective Gag proteins that mimicked motifs found in cellular clathrin adaptors. Perturbation of clathrin incorporation into these retroviruses, via mutagenesis of viral proteins, siRNA based clathrin depletion or adaptor protein (AP180) induced clathrin sequestration, had a range of effects on the accuracy of particle morphogenesis. These effects varied according to which retrovirus was examined, and included Gag and/or Pol protein destabilization, inhibition of particle assembly and reduction in virion infectivity. For each retrovirus examined, clathrin incorporation appeared to be important for optimal replication. These data indicate that a number of retroviruses employ clathrin to facilitate the accurate morphogenesis of infectious particles. We propose a model in which clathrin contributes to the spatial organization of Gag and Pol proteins, and thereby regulates proteolytic processing of virion components during particle assembly

    Role of ESCRT-I in Retroviral Budding

    No full text
    Retroviral late-budding (L) domains are required for the efficient release of nascent virions. The three known types of L domain, designated according to essential tetrapeptide motifs (PTAP, PPXY, or YPDL), each bind distinct cellular cofactors. We and others have demonstrated that recruitment of an ESCRT-I subunit, Tsg101, a component of the class E vacuolar protein sorting (VPS) machinery, is required for the budding of viruses, such as human immunodeficiency virus type 1 (HIV-1) and Ebola virus, that encode a PTAP-type L domain, but subsequent events remain undefined. In this study, we demonstrate that VPS28, a second component of ESCRT-I, binds to a sequence close to the Tsg101 C terminus and is therefore recruited to the plasma membrane by HIV-1 Gag. In addition, we show that Tsg101 exhibits a multimerization activity. Using a complementation assay in which Tsg101 is artificially recruited to sites of HIV-1 assembly, we demonstrate that the integrity of the VPS28 binding site within Tsg101 is required for particle budding. In addition, mutation of a putative leucine zipper or residues important for Tsg101 multimerization also impairs the ability of Tsg101 to support HIV-1 budding. A minimal multimerizing Tsg101 domain is a dominant negative inhibitor of PTAP-mediated HIV-1 budding but does not inhibit YPDL-type or PPXY-type L-domain function. Nevertheless, YDPL-type L-domain activity is inhibited by expression of a catalytically inactive mutant of the class E VPS ATPase VPS4. These results indicate that all three classes of retroviral L domains require a functioning class E VPS pathway in order to effect budding. However, the PTAP-type L domain appears to be unique in its requirement for an intact, or nearly intact, ESCRT-I complex

    Matrix-Induced Inhibition of Membrane Binding Contributes to Human Immunodeficiency Virus Type 1 Particle Assembly Defects in Murine Cells

    No full text
    Defective human immunodeficiency virus type 1 (HIV-1) assembly in murine cells is accompanied by poor plasma membrane binding and proteolytic processing of the HIV-1 Gag precursor. Here, we show that such defects are induced by the propensity of the HIV-1 MA globular head to inhibit membrane binding and particle assembly, particularly at the low expression levels observed in murine cells. Simple additions to or deletion of the MA globular head can improve the yield of infectious virions from murine cells by >50-fold. Expression level and autoinhibition can be important confounding variables in studies of HIV-1 assembly and contribute to defects encountered in murine cells

    Vpu Binds Directly to Tetherin and Displaces It from Nascent Virions

    Get PDF
    <div><p>Tetherin (Bst2/CD317/HM1.24) is an interferon-induced antiviral host protein that inhibits the release of many enveloped viruses by tethering virions to the cell surface. The HIV-1 accessory protein, Vpu, antagonizes Tetherin through a variety of proposed mechanisms, including surface downregulation and degradation. Previous studies have demonstrated that mutation of the transmembrane domains (TMD) of both Vpu and Tetherin affect antagonism, but it is not known whether Vpu and Tetherin bind directly to each other. Here, we use cysteine-scanning mutagenesis coupled with oxidation-induced cross-linking to demonstrate that Vpu and Tetherin TMDs bind directly to each other in the membranes of living cells and to map TMD residues that contact each other. We also reveal a property of Vpu, namely the ability to displace Tetherin from sites of viral assembly, which enables Vpu to exhibit residual Tetherin antagonist activity in the absence of surface downregulation or degradation. Elements in the cytoplasmic tail domain (CTD) of Vpu mediate this displacement activity, as shown by experiments in which Vpu CTD fragments were directly attached to Tetherin in the absence of the TMD. In particular, the C-terminal α-helix (H2) of Vpu CTD is sufficient to remove Tetherin from sites of viral assembly and is necessary for full Tetherin antagonist activity. Overall, these data demonstrate that Vpu and Tetherin interact directly via their transmembrane domains enabling activities present in the CTD of Vpu to remove Tetherin from sites of viral assembly.</p></div

    Multiple Vpu CTD elements are required for optimal Tetherin downregulation and degradation.

    No full text
    <p>(<b>A</b>) 293T cells stably expressing Tetherin-HA were transduced with VSV-G pseudotyped HIV-1 based vector encoding GFP and various mutant Vpu proteins. Cells transduced at an MOI of 0.5 were surface-stained using an α-HA antibody and analyzed by FACS to determine the relative level of Tetherin-HA expression. The FACS plots show examples of this assay. (<b>B</b>) Cells transduced with the same vectors used in (<b>A</b>), but at an MOI of 3, were lysed and analyzed using quantitative fluorescence-based Western blotting. Blots were probed with antibodies specific for Vpu, GFP, tubulin, capsid and HA, as indicated. (<b>C</b>) Chart summarizing data from assays carried out as described in (<b>A</b>) and (<b>B</b>). For FACS analysis, the geometric mean fluorescence after gating on GFP-positive cells was quantified (gray bars). For Western blot analysis band intensities were quantified using a LI-COR scanner (red bars). The mean and standard deviation of the relative amounts of Vpu expression (from four independent experiments) is plotted, with the amount of Tetherin expression observed following transduction with the ΔVpu vector set to 100%.</p
    corecore