38 research outputs found

    Bribing Biodiversity: Corruption, Participation, and Community-Based Management in Venezuela

    Get PDF
    Widespread alarm over the continuing decline of marine and freshwater fisheries has prompted research on the theory and practice of community-based management (CBM). Considering the suite of possible CBM benefits--including local involvement, compliance with regulations, reduced enforcement costs, and sustainable resource use--it is understandable that CBM projects are on the rise. However, there is insufficient examination of the challenges to CBM and the context-specific feasibility of grassroots stewardship. In response, we applied an assessment framework to a Venezuelan fishery to evaluate the feasibility of CBM and to identify barriers to its fruition. We used a variety of methods in concert (including observation, Rapid Rural Appraisal, a survey, and interviews) to assess the characteristics of the 1) resource, 2) user group, and 3) governing institutions. Our results show that resource and user group characteristics are CBM compatible. The negative influence of all institutional characteristics--particularly impediments to local participation and the prevalence of corruption--makes CBM unfeasible in the study site at this time. We discuss these barriers and their implications. The details of reforms necessary to facilitate CBM and prevent fish species loss are, however, beyond the scope of this study

    Most probable transition paths in piecewise-smooth stochastic differential equations

    Full text link
    We develop a path integral framework for determining most probable paths in a class of systems of stochastic differential equations with piecewise-smooth drift and additive noise. This approach extends the Freidlin-Wentzell theory of large deviations to cases where the system is piecewise-smooth and may be non-autonomous. In particular, we consider an nn-dimensional system with a switching manifold in the drift that forms an (n1)(n-1)-dimensional hyperplane and investigate noise-induced transitions between metastable states on either side of the switching manifold. To do this, we mollify the drift and use Γ\Gamma-convergence to derive an appropriate rate functional for the system in the piecewise-smooth limit. The resulting functional consists of the standard Freidlin-Wentzell rate functional, with an additional contribution due to times when the most probable path slides in a crossing region of the switching manifold. We explore implications of the derived functional through two case studies, which exhibit notable phenomena such as non-unique most probable paths and noise-induced sliding in a crossing region.Comment: 38 pages, 9 figure

    A cost-effective method to quantify biological surface sediment reworking

    Get PDF
    We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g., luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2.d-1, such as triggered by intermediate density (774 m-2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2.d-1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution

    Gendered Risk Perceptions Associated with Human-Wildlife Conflict: Implications for Participatory Conservation

    Get PDF
    This research aims to foster discourse about the extent to which gender is important to consider within the context of participatory approaches for biological conservation. Our objectives are to: (1) gender-disaggregate data about stakeholders' risk perceptions associated with human-wildlife conflict (HWC) in a participatory conservation context, and (2) highlight insights from characterizing gendered similarities and differences in the way people think about HWC-related risks. Two communal conservancies in Caprivi, Namibia served as case study sites. We analyzed data from focus groups (n = 2) to create gendered concept maps about risks to wildlife and livelihoods and any associations of those risks with HWC, and semi-structured interviews (n = 76; men = 38, women = 38) to measure explicit risk attitudes associated with HWC. Concept maps indicated some divergent perceptions in how groups characterized risks to wildlife and livelihoods; however, not only were identified risks to wildlife (e.g., pollution, hunting) dissimilar in some instances, descriptions of risks varied as well. Study groups reported similar risk perceptions associated with HWC with the exception of worry associated with HWC effects on local livelihoods. Gendered differences in risk perceptions may signal different priorities or incentives to participate in efforts to resolve HWC-related risks. Thus, although shared goals and interests may seem to be an obvious reason for cooperative wildlife management, it is not always obvious that management goals are shared. Opportunity exists to move beyond thinking about gender as an explanatory variable for understanding how different groups think about participating in conservation activities

    Consensus-Based Collaboration in Watershed Management: Quixotic Notion or the Environmental Pot of Gold?

    Full text link
    Click on the PDF for an Executive Summary and the full report. Visit the HDRU website for a complete listing of HDRU publications at: http://hdru.dnr.cornell.edu

    Global and Local Visions of Collaboration in Water Resources Management [abstract]

    Get PDF
    2 pages

    Extreme Precipitation Across Adjacent Burned and Unburned Watersheds Reveals Impacts of Low Severity Wildfire on Debris-Flow Processes

    No full text
    In steep landscapes, wildfire-induced changes to soil and vegetation can lead to extreme and hazardous geomorphic responses, including debris flows. The wildfire-induced mechanisms that lead to heightened geomorphic responses, however, depend on many site-specific factors including regional climate, vegetation, soil texture, and soil burn severity. As climate and land use change drive changes in fire regime, there is an increasing need to understand how fire alters geomorphic responses, particularly in areas where fire has been historically infrequent. Here, we examine differences in the initiation, magnitude, and particle-size distribution of debris flows that initiated within the area burned by the 2019 Woodbury Fire in central Arizona, USA, and those that initiated in a nearby unburned area. Despite similar rainfall intensities, unburned watersheds were less likely to produce debris flows. Debris flows in unburned areas initiated from both runoff and shallow landslides, while debris flows only initiated from runoff-related processes in the burned area. The grain-size distribution making up the matrix of debris-flow deposits within the burned area generally had a lower ratio of sand to silt relative to debris flows that initiated in the unburned area, though there were no systematic differences in the coarse fraction of debris-flow sediment between burned and unburned areas. Results help expand our ability to predict postwildfire debris-flow activity in a wider range of settings, specifically the Sonoran Desert ecoregion, and provide general insight into the impact of wildfire on geomorphic processes in steep terrain. © 2021. American Geophysical Union. All Rights Reserved.6 month embargo; first published: 10 March 2021This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore