923 research outputs found

    Material Dependence of the Wire-Particle Casimir Interaction

    Get PDF
    We study the Casimir interaction between a metallic cylindrical wire and a metallic spherical particle by employing the scattering formalism. At large separations, we derive the asymptotic form of the interaction. In addition, we find the interaction between a metallic wire and an isotropic atom, both in the non-retarded and retarded limits. We identify the conditions under which the asymptotic Casimir interaction does not depend on the material properties of the metallic wire and the particle. Moreover, we compute the exact Casimir interaction between the particle and the wire numerically. We show that there is a complete agreement between the numerics and the asymptotic energies at large separations. For short separations, our numerical results show good agreement with the proximity force approximation

    Universality versus material dependence of fluctuation forces between metallic wires

    Full text link
    We calculate the Casimir interaction between two parallel wires and between a wire and a metall plate. The dielectric properties of the objects are described by the plasma, Drude and perfect metal models. We find that at asymptotically large separation interactions involving plasma wires and/or plates are independent of the material properties, but depend on the dc conductivity σ\sigma for Drude wires. Counterintuitively, at intermediate separations the interaction involving Drude wires can become independent of σ\sigma. At smaller separations, we compute the interaction numerically and observe an approach to the proximity approximation

    Collective charge fluctuations and Casimir interactions for quasi one-dimensional metals

    Full text link
    We investigate the Casimir interaction between two parallel metallic cylinders and between a metallic cylinder and plate. The material properties of the metallic objects are implemented by the plasma, Drude and perfect metal model dielectric functions. We calculate the Casimir interaction numerically at all separation distances and analytically at large separations. The large-distance asymptotic interaction between one plasma cylinder parallel to another plasma cylinder or plate does not depend on the material properties, but for a Drude cylinder it depends on the dc conductivity σ\sigma. At intermediate separations, for plasma cylinders the asymptotic interaction depends on the plasma wave length λp\lambda_{\rm p} while for Drude cylinders the Casimir interaction can become independent of the material properties. We confirm the analytical results by the numerics and show that at short separations, the numerical results approach the proximity force approximation

    Quantum and thermal Casimir interaction between a sphere and a plate: Comparison of Drude and plasma models

    Full text link
    We calculate the Casimir interaction between a sphere and a plate, both described by the plasma model, the Drude model, or generalizations of the two models. We compare the results at both zero and finite temperatures. At asymptotically large separations we obtain analytical results for the interaction that reveal a non-universal, i.e., material dependent interaction for the plasma model. The latter result contains the asymptotic interaction for Drude metals and perfect reflectors as different but universal limiting cases. This observation is related to the screening of a static magnetic field by a London superconductor. For small separations we find corrections to the proximity force approximation (PFA) that support correlations between geometry and material properties that are not captured by the Lifshitz theory. Our results at finite temperatures reveal for Drude metals a non-monotonic temperature dependence of the Casimir free energy and a negative entropy over a sizeable range of separations.Comment: 11 pages, 5 figure

    Elastic Lattice Polymers

    Get PDF
    We study a model of "elastic" lattice polymer in which a fixed number of monomers mm is hosted by a self-avoiding walk with fluctuating length ll. We show that the stored length density ρm=1/m\rho_m = 1 - /m scales asymptotically for large mm as ρm=ρ(1θ/m+...)\rho_m=\rho_\infty(1-\theta/m + ...), where θ\theta is the polymer entropic exponent, so that θ\theta can be determined from the analysis of ρm\rho_m. We perform simulations for elastic lattice polymer loops with various sizes and knots, in which we measure ρm\rho_m. The resulting estimates support the hypothesis that the exponent θ\theta is determined only by the number of prime knots and not by their type. However, if knots are present, we observe strong corrections to scaling, which help to understand how an entropic competition between knots is affected by the finite length of the chain.Comment: 10 page

    Thinning of superfluid films below the critical point

    Full text link
    Experiments on 4^4He films reveal an attractive Casimir-like force at the bulk λ\lambda-point, and in the superfluid regime. Previous work has explained the magnitude of this force at the λ\lambda transition and deep in the superfluid region but not the substantial attractive force immediately below the λ\lambda-point. Utilizing a simple mean-field calculation renormalized by critical fluctuations we obtain an effective Casimir force that is qualitatively consistent with the scaling function ϑ\vartheta obtained by collapse of experimental data.Comment: 4 page

    Bone health in patients with multiple sclerosis relapses

    Get PDF
    OBJECTIVES: To evaluate the bone health and vitamin D levels of a cohort of patients with relapses of multiple sclerosis (MS) and to propose an algorithm for the management of bone health in this patient group. METHODS: We prospectively studied 56 consecutive patients from our acute relapse clinic. 3 patients were excluded from analysis as they were not deemed to have experienced an acute MS relapse. Bone health was assessed with vitamin D levels and Dual Energy X-ray Absorptiometry (DEXA) scanning (10 patients failed to attend for DEXA). Statistical analyses were used to compare groups and identify predictive variables. A review of the literature led to a proposed management protocol. RESULTS: Pre-relapse the baseline EDSS was ≤6.5 in all subjects, and <4.0 in the majority (66%). Most received corticosteroids. 51% had low bone mineral density (BMD) as defined by a T-score less than −1.0 on DEXA scanning. Three were osteoporotic (T-score less than −2.5). Thirty one of fifty (62%) subjects were Vitamin D deficient (25(OH)D less than 50 nmol/L). A range of variables, including previous corticosteroid usage, were not significantly predictive of reduced BMD. CONCLUSIONS: There was a high frequency of both low BMD and Vitamin D deficiency in this cohort of relatively young and largely ambulatory patients experiencing MS relapses. Current tools, such as the WHO FRAX algorithm, are inadequate in assessing bone status and fracture risk in this patient group, predominantly as they are focused on older age groups. We propose a simple clinical management algorithm

    pH-Responsive PVA-Based Nanofibers Containing GO Modified with Ag Nanoparticles: Physico-Chemical Characterization, Wound Dressing, and Drug Delivery

    Get PDF
    Site-specific drug delivery and carrying repairing agents for wound healing purposes can be achieved using the intertwined three-dimensional structure of nanofibers. This study aimed to optimize and fabricate poly (vinyl alcohol) (PVA)-graphene oxide (GO)-silver (Ag) nanofibers containing curcumin (CUR) using the electrospinning method for potential wound healing applications. Fourier Transform Infrared (FTIR) spectrophotometry, X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS), and zeta potential were used to characterize the nanostructures. The mechanical properties of the nanostructures were subsequently examined by tensile strength and elongation test. As shown by MIC analysis of E. coli and S. aureus bacteria, the fabricated nanofibers had superior inhibitory effects on the bacteria growth. Ag nanoparticles incorporation into the nanofibers resulted in increased loading and encapsulation efficiencies from 21% to 56% and from 61% to 86%, respectively. CUR release from PVA/GO-Ag-CUR nanofiber at pH 7.4 was prevented, while the acidic microenvironment (pH 5.4) increased the release of CUR from PVA/GO-Ag-CUR nanofiber, corroborating the pH-sensitivity of the nanofibers. Using the in vitro wound healing test on NIH 3T3 fibroblast cells, we observed accelerated growth and proliferation of cells cultured on PVA/GO-Ag-CUR nanofibers
    corecore