1,047 research outputs found

    Economic consequences of insect pests outbreaks in boreal forests: a literature review

    Get PDF
    Вспышки насекомых-вредителей считаются одним из наиболее разрушительных видов естественных лесных нарушений. Серьезность таких вспышек в последние годы быстро возрастает из-за процесса глобального потепления, который влияет на скорость размножения вредителей и диапазон их естественного распространения. Особое значение имеют экономические последствия данных видов нарушений. Несмотря на обширные исследования экологии древесных фитофагов, вопросы оценки экономического ущерба и формирования механизмов его минимизации изучены слабо. В данной статье представлен обзор исследований, посвященных проблеме вредных воздействий насекомых – вредителей леса, классифицированных по их локализации. Область исследования включает в себя в основном бореальные леса, расположенные в ряде европейских стран, США, Канаде и России. В исследовании обсуждаются инструменты, применяемые для предотвращения упомянутых выше нарушений и смягчения соответствующих негативных последствий. Несмотря на то, что существуют теоретические подходы к анализу экономических последствий поражения лесов вредителями, они пока не могут найти практического применени

    Constraints on regional drivers of relative sea-level change around Cordova, Alaska

    Get PDF
    New records of paleoenvironmental change from two lakes near Cordova, south central Alaska, combined with analysis of previously reported sediment sequences from the adjacent Copper River Delta, provide quantitative constraints on a range of Earth system processes through their expression in relative sea-level change. Basal sediment ages from Upper Whitshed Lake indicate ice-free conditions by at least 14,140 – 15,040 cal yr BP. While Upper and Lower Whitshed Lakes provide only upper limits to relative sea-level change, interbedded layers of freshwater peat and intertidal silt extending more than 11 m below present sea level in Copper River Delta indicate net submergence over the last 6000 years and multiple earthquake deformation cycles. In contrast, Lower Whitshed Lake, situated just above present high tide level, records only one episode of marine sedimentation, commencing AD 1120 – 1500, that we interpret as the result of isostatic subsidence due to Little Ice Age mass accumulation of the Chugach Mountain glaciers. Lower Whitshed Lake also records isostatic uplift at the end of the Little Ice Age before the end of marine sedimentation caused by ~1.5 m coseismic uplift in the great Alaska earthquake of AD 1964. We successfully explain the records of relative sea-level change from both Copper River Delta and the Whitshed Lakes by integrating the effects of eustatic sea-level rise, glacial isostasy, earthquake deformation cycles, sediment loading, sediment compaction and late Holocene changes in glacier mass into a single model. This approach provides initial quantitative constraints on the individual contributions of these processes. Taking reasonable estimates of eustasy, post-Last Glacial Maximum and Neoglacial glacial isostatic adjustment and a simple earthquake deformation cycle, we demonstrate that sediment loading and sediment compaction are both contributors to relative sea-level rise at Copper River Delta, together producing subsidence averaging approximately 1.2 mm yr-1 over the mid to late Holocene. Further isolation basin studies have the potential to greatly improve our understanding of the individual contributions of these processes in this highly dynamic region

    Multi-Qubit Systems: Highly Entangled States and Entanglement Distribution

    Full text link
    A comparison is made of various searching procedures, based upon different entanglement measures or entanglement indicators, for highly entangled multi-qubits states. In particular, our present results are compared with those recently reported by Brown et al. [J. Phys. A: Math. Gen. 38 (2005) 1119]. The statistical distribution of entanglement values for the aforementioned multi-qubit systems is also explored.Comment: 24 pages, 3 figure

    Miniature radiocarbon measurements (< 150 μg C) from sediments of Lake Żabińskie, Poland: effect of precision and dating density on age-depth models

    Get PDF
    The recent development of the MIni CArbon DAting System (MICADAS) allows researchers to obtain radiocarbon (14C) ages from a variety of samples with miniature amounts of carbon (<150 µg C) by using a gas ion source input that bypasses the graphitization step used for conventional 14C dating with accelerator mass spectrometry (AMS). The ability to measure smaller samples, at reduced cost compared with graphitized samples, allows for greater dating density of sediments with low macrofossil concentrations. In this study, we use a section of varved sediments from Lake Żabińskie, NE Poland, as a case study to assess the usefulness of miniature samples from terrestrial plant macrofossils for dating lake sediments. Radiocarbon samples analyzed using gas-source techniques were measured from the same depths as larger graphitized samples to compare the reliability and precision of the two techniques directly. We find that the analytical precision of gas-source measurements decreases as sample mass decreases but is comparable with graphitized samples of a similar size (approximately 150 µg C). For samples larger than 40 µg C and younger than 6000 BP, the uncalibrated 1σ age uncertainty is consistently less than 150 years (±0.010 F14C). The reliability of 14C ages from both techniques is assessed via comparison with a best-age estimate for the sediment sequence, which is the result of an OxCal V sequence that integrates varve counts with 14C ages. No bias is evident in the ages produced by either gas-source input or graphitization. None of the 14C ages in our dataset are clear outliers; the 95 % confidence intervals of all 48 calibrated 14C ages overlap with the median best-age estimate. The effects of sample mass (which defines the expected analytical age uncertainty) and dating density on age–depth models are evaluated via simulated sets of 14C ages that are used as inputs for OxCal P-sequence age–depth models. Nine different sampling scenarios were simulated in which the mass of 14C samples and the number of samples were manipulated. The simulated age–depth models suggest that the lower analytical precision associated with miniature samples can be compensated for by increased dating density. The data presented in this paper can improve sampling strategies and can inform expectations of age uncertainty from miniature radiocarbon samples as well as age–depth model outcomes for lacustrine sediments

    PD-1 Co-inhibitory and OX40 Co-stimulatory Crosstalk Regulates Helper T Cell Differentiation and Anti-Plasmodium Humoral Immunity

    Get PDF
    SummaryThe differentiation and protective capacity of Plasmodium-specific T cells are regulated by both positive and negative signals during malaria, but the molecular and cellular details remain poorly defined. Here we show that malaria patients and Plasmodium-infected rodents exhibit atypical expression of the co-stimulatory receptor OX40 on CD4 T cells and that therapeutic enhancement of OX40 signaling enhances helper CD4 T cell activity, humoral immunity, and parasite clearance in rodents. However, these beneficial effects of OX40 signaling are abrogated following coordinate blockade of PD-1 co-inhibitory pathways, which are also upregulated during malaria and associated with elevated parasitemia. Co-administration of biologics blocking PD-1 and promoting OX40 signaling induces excessive interferon-gamma that directly limits helper T cell-mediated support of humoral immunity and decreases parasite control. Our results show that targeting OX40 can enhance Plasmodium control and that crosstalk between co-inhibitory and co-stimulatory pathways in pathogen-specific CD4 T cells can impact pathogen clearance

    Electro-elastic tuning of single particles in individual self-assembled quantum dots

    Full text link
    We investigate the effect of uniaxial stress on InGaAs quantum dots in a charge tunable device. Using Coulomb blockade and photoluminescence, we observe that significant tuning of single particle energies (~ -0.5 meV/MPa) leads to variable tuning of exciton energies (+18 to -0.9 micro-eV/MPa) under tensile stress. Modest tuning of the permanent dipole, Coulomb interaction and fine-structure splitting energies is also measured. We exploit the variable exciton response to tune multiple quantum dots on the same chip into resonance.Comment: 16 pages, 4 figures, 1 table. Final versio

    The Economic Value of Environmental Services on Indigenous-Held Lands in Australia

    Get PDF
    Australians could be willing to pay from 878mto878m to 2b per year for Indigenous people to provide environmental services. This is up to 50 times the amount currently invested by government. This result was derived from a nationwide survey that included a choice experiment in which 70% of the 927 respondents were willing to contribute to a conservation fund that directly pays Indigenous people to carry out conservation activities. Of these the highest values were found for benefits that are likely to improve biodiversity outcomes, carbon emission reductions and improved recreational values. Of the activities that could be undertaken to provide the services, feral animal control attracted the highest level of support followed by coastal surveillance, weed control and fire management. Respondents' decisions to pay were not greatly influenced by the additional social benefits that can arise for Indigenous people spending time on country and providing the services, although there was approval for reduced welfare payments that might arise

    Mobile HTS SQUID System for Eddy Current Testing of Aircraft

    Get PDF
    In Non-Destructive Evaluation (NDE), eddy current techniques are commonly used for the detection of hidden material defects in metallic structures. Conventionally, one works with an excitation coil generating a field at a distinct frequency. The eddy currents are deviated by materials flaws and the resulting distorted field is sensed by a secondary coil. Because of the law of induction, this technique has its limitations in the low frequency range. This leads to a decrease of the Probability of flaw Detection (POD) in larger depths
    corecore