194 research outputs found

    Constraining the Dark Matter decay lifetime with very deep observations of the Perseus cluster with the MAGIC telescopes

    Get PDF
    We present preliminary results on Dark Matter searches from observations of the Perseus galaxy cluster with the MAGIC Telescopes. MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. Galaxy clusters are the largest known gravitationally bound structures in the Universe, with masses of ~10^15 Solar masses. There is strong evidence that galaxy clusters are Dark Matter dominated objects, and therefore promising targets for Dark Matter searches, particularly for decay signals. MAGIC has taken almost 300 hours of data on the Perseus Cluster between 2009 and 2015, the deepest observational campaign on any galaxy cluster performed so far in the very high energy range of the electromagnetic spectrum. We analyze here a small sample of this data and search for signs of dark matter in the mass range between 100 GeV and 20 TeV. We apply a likelihood analysis optimized for the spectral and morphological features expected in the dark matter decay signals. This is the first time that a dedicated Dark Matter optimization is applied in a MAGIC analysis, taking into account the inferred Dark Matter distribution of the source. The results with the full dataset analysis will be published soon by the MAGIC Collaboration

    Constraints on the steady and pulsed very high energy gamma-ray emission from observations of PSR B1951+32/CTB 80 with the MAGIC Telescope

    Get PDF
    We report on very high energy gamma-observations with the MAGIC Telescope of the pulsar PSR B1951+32 and its associated nebula, CTB 80. Our data constrain the cutoff energy of the pulsar to be less than 32 GeV, assuming the pulsed gamma-ray emission to be exponentially cut off. The upper limit on the flux of pulsed gamma-ray emission above 75 GeV is 4.3*10^-11 photons cm^-2 sec^-1, and the upper limit on the flux of steady emission above 140 GeV is 1.5*10^-11 photons cm^-2 sec^-1. We discuss our results in the framework of recent model predictions and other studies.Comment: 7 pages, 7 figures, replaced with published versio

    Systematic search for VHE gamma-ray emission from X-ray bright high-frequency BL Lac objects

    Get PDF
    All but three (M87, BL Lac and 3C 279) extragalactic sources detected so far at very high energy (VHE) gamma-rays belong to the class of high-frequency peaked BL Lac (HBL) objects. This suggested to us a systematic scan of candidate sources with the MAGIC telescope, based on the compilation of X-ray blazars by Donato et al. (2001). The observations took place from December 2004 to March 2006 and cover sources on the northern sky visible under small zenith distances zd < 30 degrees at culmination. The sensitivity of the search was planned for detecting X-ray bright F(1 keV) > 2 uJy) sources emitting at least the same energy flux at 200 GeV as at 1 keV. In order to avoid strong gamma-ray attenuation close to the energy threshold, the redshift of the sources was constrained to values z<0.3. Of the fourteen sources observed, 1ES 1218+304 and 1ES 2344+514 have been detected in addition to the known bright TeV blazars Mrk 421 and Mrk 501. A marginal excess of 3.5 sigma from the position of 1ES 1011+496 was observed and has been confirmed as a source of VHE gamma-rays by a second MAGIC observation triggered by a high optical state (Albert et al. 2007). For the remaining sources, we present here the 99% confidence level upper limits on the integral flux above ~200 GeV. We characterize the sample of HBLs (including all HBLs detected at VHE so far) by looking for correlations between their multi-frequency spectral indices determined from simultaneous optical, archival X-ray, and radio luminosities, finding that the VHE emitting HBLs do not seem to constitute a unique subclass. The absorption corrected gamma-ray luminosities at 200 GeV of the HBLs are generally not higher than their X-ray luminosities at 1 keV.Comment: 15 pages, 7 figures, 5 tables, submitted to ApJ (revised version

    Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC

    Get PDF
    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function to the combined data set of COMPTEL, EGRET and MAGIC. Final result and conclusion is unchange

    Discovery of Very High Energy gamma-rays from 1ES 1011+496 at z=0.212

    Get PDF
    We report on the discovery of Very High Energy (VHE) gamma-ray emission from the BL Lacertae object 1ES1011+496. The observation was triggered by an optical outburst in March 2007 and the source was observed with the MAGIC telescope from March to May 2007. Observing for 18.7 hr we find an excess of 6.2 sigma with an integrated flux above 200 GeV of (1.58±0.32)1011\pm0.32) 10^{-11} photons cm2^{-2} s1^{-1}. The VHE gamma-ray flux is >40% higher than in March-April 2006 (reported elsewhere), indicating that the VHE emission state may be related to the optical emission state. We have also determined the redshift of 1ES1011+496 based on an optical spectrum that reveals the absorption lines of the host galaxy. The redshift of z=0.212 makes 1ES1011+496 the most distant source observed to emit VHE gamma-rays up to date.Comment: 4 pages, 6 figures, minor changes to fit the ApJ versio

    Upper limit for gamma-ray emission above 140 GeV from the dwarf spheroidal galaxy Draco

    Get PDF
    The nearby dwarf spheroidal galaxy Draco with its high mass to light ratio is one of the most auspicious targets for indirect dark matter searches. Annihilation of hypothetical DM particles can result in high-energy gamma-rays, e.g. from neutralino annihilation in the supersymmetric framework. With the MAGIC telescope a search for a possible DM signal originating from Draco was performed during 2007. The analysis of the data results in a flux upper limit of 1.1x10^-11 photons cm^-2 sec^-1 for photon energies above 140 GeV, assuming a point like source. Furthermore, a comparison with predictions from supersymmetric models is given. While our results do not constrain the mSUGRA phase parameter space, a very high flux enhancement can be ruled out.Comment: Accepted for publication by Astrophysical Journa
    corecore