180 research outputs found
Influence of drainage status on soil and water chemistry, litter decomposition and soil respiration in central Amazonian forests on sandy soils
Central Amazonian rainforest landscape supports a mosaic of tall terra firme rainforest and ecotone campinarana, riparian and campina forests, reflecting topography-induced variations in soil, nutrient and drainage conditions. Spatial and temporal variations in litter decomposition, soil and groundwater chemistry and soil CO2 respiration were studied in forests on sandy soils, whereas drought sensitivity of poorly-drained valley soils was investigated in an artificial drainage experiment. Slightly changes in litter decomposition or water chemistry were observed as a consequence of artificial drainage. Riparian plots did experience higher litter decomposition rates than campina forest. In response to a permanent lowering of the groundwater level from 0.1 m to 0.3 m depth in the drainage plot, topsoil carbon and nitrogen contents decreased substantially. Soil CO2 respiration decreased from 3.7±0.6 ”mol m-2 s-1 before drainage to 2.5±0.2 and 0.8±0.1 ”mol m-2 s-1 eight and 11 months after drainage, respectively. Soil respiration in the control plot remained constant at 3.7±0.6 ”mol m-2 s-1. The above suggests that more frequent droughts may affect topsoil carbon and nitrogen content and soil respiration rates in the riparian ecosystem, and may induce a transition to less diverse campinarana or short-statured campina forest that covers areas with strongly-leached sandy soil
Soil CO efflux in Central Amazonia: Environmental and methodological effects
Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on C
Optimization of electrophoretic deposition technique to control doping and densification of protective spinel coatings for SOC interconnects
Manganese cobaltite spinel coatings have been reported to limit oxidation and Cr-evaporation from ferritic stainless steel interconnects in solid oxide cell stacks; however, the implementation of the functional properties of the base MnâCo spinel coating and compatibility with the substrate can be pursued through the optimisation of the coating composition, as well as the deposition method and sintering profile. Electrophoretic deposition (EPD) allows to deposit homogeneous layers in few seconds on complexly shaped steel components; it also offers the possibility to produce in-situ doped coatings, avoiding time and energy consuming multi-step processes.
In this work, various EPD suspensions are optimised to achieve a single step co-deposition of CuO, Fe2O3 and Mn1,5Co1,5O4 on Crofer 22 APU. Different Fe-Cu doped MnâCo spinel are successfully obtained by controlling the precursors amount in the EPD suspension and subsequent reactive sintering, as proved by detailed SEM and TEM analyses. Improved functional properties of produced coatings are evaluated in terms of oxidation kinetics and area specific resistance. Both the iron and copper amount in the coating and the sintering process significantly influence the coating densification, with benefits to the protective properties and thermomechanical compatibility with the interconnect
Diabetic kidney disease in type 2 diabetes: a consensus statement from the Swiss Societies of Diabetes and Nephrology.
Diabetic kidney disease is highly prevalent in patients with type 2 diabetes and is a major cause of end-stage renal disease in Switzerland. Patients with diabetic kidney disease are among the most complex patients in diabetes care. They require a multifactorial and multidisciplinary approach with the goal to slow the decline in glomerular filtration rate (GFR) and cardiovascular morbidity. With this consensus we propose an evidence-based guidance to health care providers involved in the care of type 2 diabetic patients with diabetic kidney disease.First, there is a need to increase physician awareness and improve screening for diabetic kidney disease as early intervention may improve clinical outcomes and the financial burden. Evaluation of estimated GFR (eGFR) and spot urine albumin/creatinine ratio is recommended at least annually. Once it is diagnosed, glucose control and optimisation of blood pressure control with renin-angiotensin system blockers have been recommended as mainstay management of diabetic kidney disease for more than 20 years. Recent, high quality randomised controlled trials have shown that sodium-glucose cotransporter-2 (SGLT2) inhibition slows eGFR decline and cardiovascular events beyond glucose control. Likewise, mineralocorticoid receptor antagonism with finerenone has cardiorenal protective effects in diabetic kidney disease. Glucagon-like peptide-1 (GLP1) receptor agonists improve weight loss if needed, and decrease albuminuria and cardiovascular morbidity. Lipid control is also important to decrease cardiovascular events. All these therapies are included in the treatment algorithms proposed in this consensus. With advancing kidney failure, other challenges may rise, such as hyperkalaemia, anaemia and metabolic acidosis, as well as chronic kidney disease-mineral and bone disorder. These different topics and treatment strategies are discussed in this consensus. Finally, an update on diabetes management in renal replacement therapy such as haemodialysis, peritoneal dialysis and renal transplantation is provided. With the recent developments of efficient therapies for diabetic kidney disease, it has become evident that a consensus document is necessary. We are optimistic that it will significantly contribute to a high-quality care for patients with diabetic kidney disease in Switzerland in the future
Magneto-Roton Modes of the Ultra Quantum Crystal: Numerical Study
The Field Induced Spin Density Wave phases observed in quasi-one-dimensional
conductors of the Bechgaard salts family under magnetic field exhibit both Spin
Density Wave order and a Quantized Hall Effect, which may exhibit sign
reversals. The original nature of the condensed phases is evidenced by the
collective mode spectrum. Besides the Goldstone modes, a quasi periodic
structure of Magneto-Roton modes, predicted to exist for a monotonic sequence
of Hall Quantum numbers, is confirmed, and a second mode is shown to exist
within the single particle gap. We present numerical estimates of the
Magneto-Roton mode energies in a generic case of the monotonic sequence. The
mass anisotropy of the collective mode is calculated. We show how differently
the MR spectrum evolves with magnetic field at low and high fields. The
collective mode spectrum should have specific features, in the sign reversed
"Ribault Phase", as compared to modes of the majority sign phases. We
investigate numerically the collective mode in the Ribault Phase.Comment: this paper incorporates material contained in a previous cond-mat
preprint cond-mat/9709210, but cannot be described as a replaced version,
because it contains a significant amount of new material dealing with the
instability line and with the topic of Ribault Phases. It contains 13 figures
(.ps files
Geometrical frustration induced (semi-)metal to insulator transition
We study the low-energy properties of the geometrically frustrated Hubbard
model on a three-dimensional pyrochlore lattice and a two-dimensional
checkerboard lattice on the basis of the renormalization group method and mean
field analysis. It is found that in the half-filling case, a (semi-)metal to
insulator transition (MIT) occurs. Also, in the insulating phase, which has a
spin gap, the spin rotational symmetry is not broken, while charge ordering
exists. The results are applied to the description of the MIT observed in the
pyrochlore system .Comment: 4 pages, 5 figure
Landau's quasi-particle mapping: Fermi liquid approach and Luttinger liquid behavior
A continuous unitary transformation is introduced which realizes Landau's
mapping of the elementary excitations (quasi-particles) of an interacting Fermi
liquid system to those of the system without interaction. The conservation of
the number of quasi-particles is important. The transformation is performed
numerically for a one-dimensional system, i.e. the worst case for a Fermi
liquid approach. Yet evidence for Luttinger liquid behavior is found. Such an
approach may open a route to a unified description of Fermi and Luttinger
liquids on all energy scales.Comment: 4 pages, 3 figures included, final version to appear in Phys. Rev.
Lett., references updated, slight re-focus on the treatment of all energy
scale
Persistent currents in mesoscopic rings: A numerical and renormalization group study
The persistent current in a lattice model of a one-dimensional interacting
electron system is systematically studied using a complex version of the
density matrix renormalization group algorithm and the functional
renormalization group method. We mainly focus on the situation where a single
impurity is included in the ring penetrated by a magnetic flux. Due to the
interplay of the electron-electron interaction and the impurity the persistent
current in a system of N lattice sites vanishes faster then 1/N. Only for very
large systems and large impurities our results are consistent with the
bosonization prediction obtained for an effective field theory. The results
from the density matrix renormalization group and the functional
renormalization group agree well for interactions as large as the band width,
even though as an approximation in the latter method the flow of the
two-particle vertex is neglected. This confirms that the functional
renormalization group method is a very powerful tool to investigate correlated
electron systems. The method will become very useful for the theoretical
description of the electronic properties of small conducting ring molecules.Comment: 9 pages, 8 figures include
Interaction-induced Fermi surface deformations in quasi one-dimensional electronic systems
We consider serious conceptual problems with the application of standard
perturbation theory, in its zero temperature version, to the computation of the
dressed Fermi surface for an interacting electronic system. In order to
overcome these difficulties, we set up a variational approach which is shown to
be equivalent to the renormalized perturbation theory where the dressed Fermi
surface is fixed by recursively computed counterterms. The physical picture
that emerges is that couplings that are irrelevant tend to deform the Fermi
surface in order to become more relevant (irrelevant couplings being those that
do not exist at vanishing excitation energy because of kinematical constraints
attached to the Fermi surface). These insights are incorporated in a
renormalization group approach, which allows for a simple approximate
computation of Fermi surface deformation in quasi one-dimensional electronic
conductors. We also analyze flow equations for the effective couplings and
quasiparticle weights. For systems away from half-filling, the flows show three
regimes corresponding to a Luttinger liquid at high energies, a Fermi liquid,
and a low-energy incommensurate spin-density wave. At half-filling Umklapp
processes allow for a Mott insulator regime where the dressed Fermi surface is
flat, implying a confined phase with vanishing effective transverse
single-particle coherence. The boundary between the confined and Fermi liquid
phases is found to occur for a bare transverse hopping amplitude of the order
of the Mott charge gap of a single chain.Comment: 38 pages, 39 figures. Accepted for publication in Phys. Rev.
- âŠ