6 research outputs found

    Analogue Application of Behaviour and Transport of Naturally Occurring Strontium in Cold-Region Aquatic Environments to 90Sr

    No full text
    Quantification and scientific observations of the fate and transport of dissolved strontium in water systems, particularly cold climate water systems, are severely lacking. In this work, in an experiment conducted at a temperature of 6 °C, the observation of strontium precipitation along with calcium carbonate minerals from cold wastewater is investigated. ICP-MS is used for metal analyses where the distribution of the species and saturation state of minerals along with a surface complexation model was performed using the public-use USGS geochemical modeling software, PHREEQC (PH Redox Equilibrium (in C language)). Sample media were analyzed using XPS and Raman spectroscopy. The results suggest that the loss of strontium from natural waters is via the process of co-precipitation with calcite, a calcium carbonate polymorph. The observations and findings are intended to be useful to quantify the loss of 90Sr from the water, in the case of an unplanned release from a nuclear reactor-operated facility. The results indicate that the precipitation model is a robust and reliable approach to predicting and monitoring the behaviour and transport of strontium that may occur in natural environments as a result of an accidental nuclear release

    Analogue Application of Behaviour and Transport of Naturally Occurring Strontium in Cold-Region Aquatic Environments to <sup>90</sup>Sr

    No full text
    Quantification and scientific observations of the fate and transport of dissolved strontium in water systems, particularly cold climate water systems, are severely lacking. In this work, in an experiment conducted at a temperature of 6 °C, the observation of strontium precipitation along with calcium carbonate minerals from cold wastewater is investigated. ICP-MS is used for metal analyses where the distribution of the species and saturation state of minerals along with a surface complexation model was performed using the public-use USGS geochemical modeling software, PHREEQC (PH Redox Equilibrium (in C language)). Sample media were analyzed using XPS and Raman spectroscopy. The results suggest that the loss of strontium from natural waters is via the process of co-precipitation with calcite, a calcium carbonate polymorph. The observations and findings are intended to be useful to quantify the loss of 90Sr from the water, in the case of an unplanned release from a nuclear reactor-operated facility. The results indicate that the precipitation model is a robust and reliable approach to predicting and monitoring the behaviour and transport of strontium that may occur in natural environments as a result of an accidental nuclear release

    Calibration and Validation of Calcium Carbonate Precipitation Potential (CCPP) Model for Strontium Quantification in Cold Climate Aquatic Environments

    No full text
    The ability to robustly quantify the potential for strontium precipitation and scaling in both natural surface waters and water infrastructure systems is limited. In some regions, both surface and ground water supplies contain significant concentrations of naturally occurring radionuclides, such as strontium, that can accumulate in water, soils and sediments, media, and living tissues. Methods for quantifying and predicting the potential for these occurrences are not readily available nor have they been tested and calibrated to cold region aquatic environments. Through extensive literature review, it was determined that a modified calcium carbonate precipitation potential (CCPP) model offered a scientifically credible approach to filling that knowledge gap in both the science and engineering of strontium fate and transport in water. The results from previous field and laboratory experiments were compiled to not only elucidate the fate and transport of strontium in water systems, but also to calculate the logarithmic distribution coefficient, &lambda;, for strontium under co-precipitation conditions. Lambda (&lambda;) is both time- and water-quality sensitive and must be measured as water mixes from source to receiving environment to determine continuous loss of Sr from the water phase. The data were collected to develop the strontium precipitation potential model that can be used in surface water quality assessment. The tool was then applied to pre-existing, publicly available, and extensive datasets for several rivers in Saskatchewan, Canada, to validate the model and produce estimates for strontium precipitation potential in those rivers

    Calibration and Validation of Calcium Carbonate Precipitation Potential (CCPP) Model for Strontium Quantification in Cold Climate Aquatic Environments

    No full text
    The ability to robustly quantify the potential for strontium precipitation and scaling in both natural surface waters and water infrastructure systems is limited. In some regions, both surface and ground water supplies contain significant concentrations of naturally occurring radionuclides, such as strontium, that can accumulate in water, soils and sediments, media, and living tissues. Methods for quantifying and predicting the potential for these occurrences are not readily available nor have they been tested and calibrated to cold region aquatic environments. Through extensive literature review, it was determined that a modified calcium carbonate precipitation potential (CCPP) model offered a scientifically credible approach to filling that knowledge gap in both the science and engineering of strontium fate and transport in water. The results from previous field and laboratory experiments were compiled to not only elucidate the fate and transport of strontium in water systems, but also to calculate the logarithmic distribution coefficient, λ, for strontium under co-precipitation conditions. Lambda (λ) is both time- and water-quality sensitive and must be measured as water mixes from source to receiving environment to determine continuous loss of Sr from the water phase. The data were collected to develop the strontium precipitation potential model that can be used in surface water quality assessment. The tool was then applied to pre-existing, publicly available, and extensive datasets for several rivers in Saskatchewan, Canada, to validate the model and produce estimates for strontium precipitation potential in those rivers

    From source to filter: changes in bacterial community composition during potable water treatment

    No full text
    Rural communities rely on surface water reservoirs for potable water. Effective removal of chemical contaminants and bacterial pathogens from these reservoirs requires an understanding of the bacterial community diversity that is present. In this study, we carried out a 16S rRNA-based profiling approach to describe the bacterial consortia in the raw surface water entering the water treatment plants of two rural communities. Our results show that source water is dominated by the Proteobacteria, Bacteroidetes, and Cyanobacteria with some evidence of seasonal effects altering the predominant groups at each location. A subsequent community analysis of sections through a biological carbon filter in the water treatment plant revealed a significant increase in the proportion of Proteobacteria, Acidobacteria, Planctomycetes, and Nitrospirae relative to raw water. Also, very few enteric coliforms were identified in either the source water or within the filter, although the abundance of Mycobacterium was high, and was found throughout the filter along with Aeromonas, Legionella, and Pseudomonas. This study provides valuable insight into bacterial community composition within drinking water treatment facilities, and the importance of implementing appropriate disinfection practices to ensure safe potable water for rural communities.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore