5 research outputs found

    Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort.

    No full text
    Early life exposure to air pollution poses a significant risk to brain development from direct exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gastrointestinal systems. In children, exposure to traffic related air pollution has been associated with adverse effects on cognitive, behavioral and psychomotor development. We aimed to determine whether childhood exposure to traffic related air pollution is associated with regional differences in brain volume and cortical thickness among children enrolled in a longitudinal cohort study of traffic related air pollution and child health. We used magnetic resonance imaging to obtain anatomical brain images from a nested subset of 12 year old participants characterized with either high or low levels of traffic related air pollution exposure during their first year of life. We employed voxel-based morphometry to examine group differences in regional brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and inferior parietal lobe of participants in the high traffic related air pollution exposure group relative to participants with low exposure. Reduced cortical thickness was observed in participants with high exposure relative to those with low exposure, primarily in sensorimotor regions of the brain including the pre- and post-central gyri and the paracentral lobule, but also within the frontal and limbic regions. These results suggest that significant childhood exposure to traffic related air pollution is associated with structural alterations in brain

    STEP IN: Supporting Together Exercise and Play and Improving Nutrition; a Feasibility Study of Parent-Led Group Sessions and Fitness Trackers to Improve Family Healthy Lifestyle Behaviors in a Low-Income, Predominantly Black Population

    No full text
    Background: Pediatric obesity is prevalent and challenging to treat. Although family-centered behavioral management is the gold standard, many families face structural inequities to its access and efficacy. Identifying ways to manage pediatric obesity within primary care is needed. Methods: This feasibility study included three sequential trials of peer-led group sessions occurring biweekly or monthly between 3/2016 and 2/2017. Parent–child dyads were recruited from a large academic primary care clinic via mailed invitations, prioritizing patients living in local zip codes of historical disinvestment. Eligible patients were 6 to 12 years with a body mass index ≥85th percentile, with parent and child interest in making healthy lifestyle changes, and English speaking. Results: 27 dyads participated, 77% were non-Hispanic Black. Retention and attendance rates were highest in the initial four-session biweekly pilot (100%, 0 dropouts), high in the full six-session biweekly cohort (83%, 1 dropout), and moderate in the monthly cohort (62.7%, 4 dropouts). Families reported high satisfaction with the sessions (4.75/5). Qualitative comments suggested social connections had motivated behavior change in some families. Conclusion: Parent-led group sessions for pediatric weight management show promise in engaging families. A future large trial is needed to assess behavior change and anthropometric outcomes

    Gestational exposure to environmental chemicals and epigenetic alterations in the placenta and cord blood mononuclear cells

    No full text
    Abstract Background Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations. Method This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways. Results Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta. Conclusion Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta
    corecore