74 research outputs found

    Gene conversion in human rearranged immunoglobulin genes

    Get PDF
    Over the past 20 years, many DNA sequences have been published suggesting that all or part of the V<sub>H</sub> segment of a rearranged immunoglobulin gene may be replaced in vivo. Two different mechanisms appear to be operating. One of these is very similar to primary V(D)J recombination, involving the RAG proteins acting upon recombination signal sequences, and this has recently been proven to occur. Other sequences, many of which show partial V<sub>H</sub> replacements with no addition of untemplated nucleotides at the V<sub>H</sub>–V<sub>H</sub> joint, have been proposed to occur by an unusual RAG-mediated recombination with the formation of hybrid (coding-to-signal) joints. These appear to occur in cells already undergoing somatic hypermutation in which, some authors are convinced, RAG genes are silenced. We recently proposed that the latter type of V<sub>H</sub> replacement might occur by homologous recombination initiated by the activity of AID (activation-induced cytidine deaminase), which is essential for somatic hypermutation and gene conversion. The latter has been observed in other species, but not in human Ig genes, so far. In this paper, we present a new analysis of sequences published as examples of the second type of rearrangement. This not only shows that AID recognition motifs occur in recombination regions but also that some sequences show replacement of central sections by a sequence from another gene, similar to gene conversion in the immunoglobulin genes of other species. These observations support the proposal that this type of rearrangement is likely to be AID-mediated rather than RAG-mediated and is consistent with gene conversion

    Super yatch design study for Malaysian sea (Langkawi Island)

    Get PDF
    Malaysia as a country surrounded by water has a huge economic and geographical potential in the development of super yacht industry in South East Asia. There is lack of super yacht design study specifying to Malaysian marinas and seas. Most of the super yacht operates in Malaysia were built and bought directly from oversea, and chartered by foreign companies. It is hence the purpose of this study to survey on Malaysian sea water, particularly Langkawi Island, to introduce a design methodology in producing a preliminary design of super yacht that suits Langkawi Island, and serves as a guideline for future super yacht design for Malaysian sea in different marinas. Suitable dimensions of super yacht were derived by using dimensional relationship via statistical method. Two types of hull form designs (round bilge and V-bottom hull) were designed using Maxsurf Pro software. Resistance analysis on the two hull forms were carried out using Savitsky Pre-Planing and Compton methods via MaxsurfHullspeed software, and stability performance of the two hull forms was analyze using Hydromax software. VBottom hull form is found to have better resistance performance as compared to round bilge hull form, and both hull forms are found to be in stable conditions and comply with IMO requirements

    Generating and repairing genetically programmed DNA breaks during immunoglobulin class switch recombination

    Full text link
    Adaptive immune responses require the generation of a diverse repertoire of immunoglobulins (Igs) that can recognize and neutralize a seemingly infinite number of antigens. V(D)J recombination creates the primary Ig repertoire, which subsequently is modified by somatic hypermutation (SHM) and class switch recombination (CSR). SHM promotes Ig affinity maturation whereas CSR alters the effector function of the Ig. Both SHM and CSR require activation-induced cytidine deaminase (AID) to produce dU:dG mismatches in the Ig locus that are transformed into untemplated mutations in variable coding segments during SHM or DNA double-strand breaks (DSBs) in switch regions during CSR. Within the Ig locus, DNA repair pathways are diverted from their canonical role in maintaining genomic integrity to permit AID-directed mutation and deletion of gene coding segments. Recently identified proteins, genes, and regulatory networks have provided new insights into the temporally and spatially coordinated molecular interactions that control the formation and repair of DSBs within the Ig locus. Unravelling the genetic program that allows B cells to selectively alter the Ig coding regions while protecting non-Ig genes from DNA damage advances our understanding of the molecular processes that maintain genomic integrity as well as humoral immunity

    Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Get PDF
    • …
    corecore